Transforming Estonian health data to the Observational Medical Outcomes Partnership (OMOP) Common Data Model: lessons learned.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2023-12-05 eCollection Date: 2023-12-01 DOI:10.1093/jamiaopen/ooad100
Marek Oja, Sirli Tamm, Kerli Mooses, Maarja Pajusalu, Harry-Anton Talvik, Anne Ott, Marianna Laht, Maria Malk, Marcus Lõo, Johannes Holm, Markus Haug, Hendrik Šuvalov, Dage Särg, Jaak Vilo, Sven Laur, Raivo Kolde, Sulev Reisberg
{"title":"Transforming Estonian health data to the Observational Medical Outcomes Partnership (OMOP) Common Data Model: lessons learned.","authors":"Marek Oja, Sirli Tamm, Kerli Mooses, Maarja Pajusalu, Harry-Anton Talvik, Anne Ott, Marianna Laht, Maria Malk, Marcus Lõo, Johannes Holm, Markus Haug, Hendrik Šuvalov, Dage Särg, Jaak Vilo, Sven Laur, Raivo Kolde, Sulev Reisberg","doi":"10.1093/jamiaopen/ooad100","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To describe the reusable transformation process of electronic health records (EHR), claims, and prescriptions data into Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM), together with challenges faced and solutions implemented.</p><p><strong>Materials and methods: </strong>We used Estonian national health databases that store almost all residents' claims, prescriptions, and EHR records. To develop and demonstrate the transformation process of Estonian health data to OMOP CDM, we used a 10% random sample of the Estonian population (<i>n</i> = 150 824 patients) from 2012 to 2019 (MAITT dataset). For the sample, complete information from all 3 databases was converted to OMOP CDM version 5.3. The validation was performed using open-source tools.</p><p><strong>Results: </strong>In total, we transformed over 100 million entries to standard concepts using standard OMOP vocabularies with the average mapping rate 95%. For conditions, observations, drugs, and measurements, the mapping rate was over 90%. In most cases, SNOMED Clinical Terms were used as the target vocabulary.</p><p><strong>Discussion: </strong>During the transformation process, we encountered several challenges, which are described in detail with concrete examples and solutions.</p><p><strong>Conclusion: </strong>For a representative 10% random sample, we successfully transferred complete records from 3 national health databases to OMOP CDM and created a reusable transformation process. Our work helps future researchers to transform linked databases into OMOP CDM more efficiently, ultimately leading to better real-world evidence.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 4","pages":"ooad100"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697784/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

Objective: To describe the reusable transformation process of electronic health records (EHR), claims, and prescriptions data into Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM), together with challenges faced and solutions implemented.

Materials and methods: We used Estonian national health databases that store almost all residents' claims, prescriptions, and EHR records. To develop and demonstrate the transformation process of Estonian health data to OMOP CDM, we used a 10% random sample of the Estonian population (n = 150 824 patients) from 2012 to 2019 (MAITT dataset). For the sample, complete information from all 3 databases was converted to OMOP CDM version 5.3. The validation was performed using open-source tools.

Results: In total, we transformed over 100 million entries to standard concepts using standard OMOP vocabularies with the average mapping rate 95%. For conditions, observations, drugs, and measurements, the mapping rate was over 90%. In most cases, SNOMED Clinical Terms were used as the target vocabulary.

Discussion: During the transformation process, we encountered several challenges, which are described in detail with concrete examples and solutions.

Conclusion: For a representative 10% random sample, we successfully transferred complete records from 3 national health databases to OMOP CDM and created a reusable transformation process. Our work helps future researchers to transform linked databases into OMOP CDM more efficiently, ultimately leading to better real-world evidence.

将爱沙尼亚卫生数据转化为观察性医疗成果伙伴关系(OMOP)共同数据模型:吸取的教训。
目的:描述电子健康记录(EHR)、理赔和处方数据向观察性医疗结果伙伴关系(OMOP)公共数据模型(CDM)的可重用转换过程,以及面临的挑战和实施的解决方案。材料和方法:我们使用爱沙尼亚国家卫生数据库,该数据库存储了几乎所有居民的索赔、处方和电子病历记录。为了开发和展示爱沙尼亚健康数据向OMOP CDM的转化过程,我们使用了2012年至2019年爱沙尼亚人口(n = 150824例患者)的10%随机样本(MAITT数据集)。对于示例,来自所有3个数据库的完整信息被转换为OMOP CDM版本5.3。验证是使用开源工具进行的。结果:我们总共使用标准OMOP词汇表将超过1亿个条目转换为标准概念,平均映射率为95%。对于条件、观察、药物和测量,作图率超过90%。在大多数情况下,使用SNOMED临床术语作为目标词汇。讨论:在转型过程中,我们遇到了一些挑战,并以具体的例子和解决方案进行了详细的描述。结论:对于具有代表性的10%随机样本,我们成功地将3个国家卫生数据库的完整记录转移到OMOP CDM,并创建了一个可重复使用的转换过程。我们的工作有助于未来的研究人员更有效地将链接数据库转换为OMOP CDM,最终获得更好的真实世界证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信