MEET: A Multi-Band EEG Transformer for Brain States Decoding

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Enze Shi;Sigang Yu;Yanqing Kang;Jinru Wu;Lin Zhao;Dajiang Zhu;Jinglei Lv;Tianming Liu;Xintao Hu;Shu Zhang
{"title":"MEET: A Multi-Band EEG Transformer for Brain States Decoding","authors":"Enze Shi;Sigang Yu;Yanqing Kang;Jinru Wu;Lin Zhao;Dajiang Zhu;Jinglei Lv;Tianming Liu;Xintao Hu;Shu Zhang","doi":"10.1109/TBME.2023.3339892","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n Electroencephalography (EEG) is among the most widely used and inexpensive neuroimaging techniques. Compared to the CNN or RNN based models, Transformer can better capture the temporal information in EEG signals and focus more on global features of the brain's functional activities. Importantly, according to the multiscale nature of EEG signals, it is crucial to consider the multi-band concept into the design of EEG Transformer architecture. \n<italic>Methods:</i>\n We propose a novel \n<bold>M</b>\nulti-band \n<bold>EE</b>\nG \n<bold>T</b>\nransformer (MEET) to represent and analyze the multiscale temporal time series of human brain EEG signals. MEET mainly includes three parts: 1) transform the EEG signals into multi-band images, and preserve the 3D spatial information between electrodes; 2) design a Band Attention Block to compute the attention maps of the stacked multi-band images and infer the fused feature maps; 3) apply the Temporal Self-Attention and Spatial Self-Attention modules to extract the spatiotemporal features for the characterization and differentiation of multi-frame dynamic brain states. \n<italic>Results:</i>\n The experimental results show that: 1) MEET outperforms state-of-the-art methods on multiple open EEG datasets (SEED, SEED-IV, WM) for brain states classification; 2) MEET demonstrates that 5-bands fusion is the best integration strategy; and 3) MEET identifies interpretable brain attention regions. \n<italic>Significance:</i>\n MEET is an interpretable and universal model based on the multiband-multiscale characteristics of EEG. \n<italic>Conclusion:</i>\n The innovative combination of band attention and temporal/spatial self-attention mechanisms in MEET achieves promising data-driven learning of the temporal dependencies and spatial relationships of EEG signals across the entire brain in a holistic and comprehensive fashion.","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"71 5","pages":"1442-1453"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10345766/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Electroencephalography (EEG) is among the most widely used and inexpensive neuroimaging techniques. Compared to the CNN or RNN based models, Transformer can better capture the temporal information in EEG signals and focus more on global features of the brain's functional activities. Importantly, according to the multiscale nature of EEG signals, it is crucial to consider the multi-band concept into the design of EEG Transformer architecture. Methods: We propose a novel M ulti-band EE G T ransformer (MEET) to represent and analyze the multiscale temporal time series of human brain EEG signals. MEET mainly includes three parts: 1) transform the EEG signals into multi-band images, and preserve the 3D spatial information between electrodes; 2) design a Band Attention Block to compute the attention maps of the stacked multi-band images and infer the fused feature maps; 3) apply the Temporal Self-Attention and Spatial Self-Attention modules to extract the spatiotemporal features for the characterization and differentiation of multi-frame dynamic brain states. Results: The experimental results show that: 1) MEET outperforms state-of-the-art methods on multiple open EEG datasets (SEED, SEED-IV, WM) for brain states classification; 2) MEET demonstrates that 5-bands fusion is the best integration strategy; and 3) MEET identifies interpretable brain attention regions. Significance: MEET is an interpretable and universal model based on the multiband-multiscale characteristics of EEG. Conclusion: The innovative combination of band attention and temporal/spatial self-attention mechanisms in MEET achieves promising data-driven learning of the temporal dependencies and spatial relationships of EEG signals across the entire brain in a holistic and comprehensive fashion.
一种用于脑状态解码的多波段脑电图转换器。
目的:脑电图(EEG)是应用最广泛且价格低廉的神经成像技术之一。与基于CNN或RNN的模型相比,Transformer可以更好地捕捉EEG信号中的时间信息,更关注大脑功能活动的全局特征。重要的是,根据脑电信号的多尺度特性,在设计脑电信号变压器结构时考虑多频段的概念是至关重要的。方法:提出了一种新的多波段脑电信号变压器(MEET)来表示和分析人脑脑电信号的多尺度时间序列。MEET主要包括三个部分:1)将脑电信号转换成多波段图像,并保留电极间的三维空间信息;2)设计波段注意块,计算叠加后的多波段图像的注意图,推断融合后的特征图;3)利用时间自注意和空间自注意模块提取多帧动态脑状态的时空特征,进行表征和区分。结果:实验结果表明:1)MEET在多个开放脑电图数据集(SEED、SEED- iv、WM)上的脑状态分类优于现有方法;2) MEET表明,5波段融合是最佳融合策略;3) MEET识别可解释的大脑注意区域。意义:MEET是一种基于脑电图多频带多尺度特征的可解释的通用模型。结论:MEET创新性地将波段注意和时空自注意机制结合起来,实现了对全脑脑电信号时间依赖和空间关系的数据驱动学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信