Resolution of trans-1,2-cyclohexanedicarboxylic acid containing two carboxylic groups by forming diastereomeric salts based on feeding molar ratio control
{"title":"Resolution of trans-1,2-cyclohexanedicarboxylic acid containing two carboxylic groups by forming diastereomeric salts based on feeding molar ratio control","authors":"Xiaoyu Xin, Junjie Zhou, Quan He, Yangfeng Peng, Yongming Wei, Hongliang Zhao, Tianzhong Tong","doi":"10.1002/chir.23634","DOIUrl":null,"url":null,"abstract":"<p>To investigate the thermodynamic and molecular self-assembly mechanism of <i>trans</i>-1,2-cyclohexane dicarboxylic acid containing two carboxylic acid groups in the chiral resolution process, (<i>S</i>)-phenylethylamine was used as the chiral resolving agent. Two stoichiometric salts were formed when the raw materials were fed at different molar ratios: cyclohexane dicarboxylate monophenylethylamine salt and cyclohexane dicarboxylate diphenylethylamine salt. When the molar ratio of the (<i>S</i>)-phenylethylamine to <i>trans</i>-1,2-cyclohexane dicarboxylic acid was less than 3:1, <i>trans</i>-(<i>1S,2S</i>)-cyclohexane dicarboxylic acid was obtained with 97 e.e% purity. But when the molar ratio exceeded 3:1, the product was the racemic <i>trans</i>-(1,2)-cyclohexane dicarboxylic acid. In addition, single crystal structures of more soluble mono-salt, less soluble mono-salt, and less soluble di-salt were obtained. The weak intermolecular interactions and the way of the molecules packing in the crystals were analyzed. The hydrogen bond was stronger in the less soluble salt than that in the more soluble salt. And a “lock-and-key” structure in the hydrophobic layers makes it more tightly packed through the van der Waals interaction, which is responsible for the stability of less soluble salts.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.23634","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the thermodynamic and molecular self-assembly mechanism of trans-1,2-cyclohexane dicarboxylic acid containing two carboxylic acid groups in the chiral resolution process, (S)-phenylethylamine was used as the chiral resolving agent. Two stoichiometric salts were formed when the raw materials were fed at different molar ratios: cyclohexane dicarboxylate monophenylethylamine salt and cyclohexane dicarboxylate diphenylethylamine salt. When the molar ratio of the (S)-phenylethylamine to trans-1,2-cyclohexane dicarboxylic acid was less than 3:1, trans-(1S,2S)-cyclohexane dicarboxylic acid was obtained with 97 e.e% purity. But when the molar ratio exceeded 3:1, the product was the racemic trans-(1,2)-cyclohexane dicarboxylic acid. In addition, single crystal structures of more soluble mono-salt, less soluble mono-salt, and less soluble di-salt were obtained. The weak intermolecular interactions and the way of the molecules packing in the crystals were analyzed. The hydrogen bond was stronger in the less soluble salt than that in the more soluble salt. And a “lock-and-key” structure in the hydrophobic layers makes it more tightly packed through the van der Waals interaction, which is responsible for the stability of less soluble salts.
期刊介绍:
The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties.
Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.