Sparse optimal control of Timoshenko's beam using a locking-free finite element approximation

Erwin Hernández, Pedro Merino
{"title":"Sparse optimal control of Timoshenko's beam using a locking-free finite element approximation","authors":"Erwin Hernández, Pedro Merino","doi":"10.1002/oca.3085","DOIUrl":null,"url":null,"abstract":"This paper addresses the optimal control problem with sparse controls of a Timoshenko beam, its numerical approximation using the finite element method, and the numerical solution via nonsmooth methods. Incorporating sparsity-promoting terms in the cost function is practically useful for beam vibration models and results in the localization of the control action that facilitates the placement of actuators or control devices. We consider two types of sparsity-inducing penalizers: the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0001\" display=\"inline\" location=\"graphic/oca3085-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^1 $$</annotation>\n</semantics></math>-norm and the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0002\" display=\"inline\" location=\"graphic/oca3085-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>0</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^0 $$</annotation>\n</semantics></math>-penalizer, which measures function support. We analyze discretized problems utilizing linear finite elements with a locking-free scheme to approximate the states and adjoint states. We confirm that this approximation has the looking-free property required to achieve a linear convergence linear order of approximation for <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0003\" display=\"inline\" location=\"graphic/oca3085-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^1 $$</annotation>\n</semantics></math> control case and depending on the set of switching points in the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0004\" display=\"inline\" location=\"graphic/oca3085-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>0</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^0 $$</annotation>\n</semantics></math> controls. This is similar to the purely <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0005\" display=\"inline\" location=\"graphic/oca3085-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^2 $$</annotation>\n</semantics></math>-norm penalized optimal control, where the order of approximation is independent of the thickness of the beam.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the optimal control problem with sparse controls of a Timoshenko beam, its numerical approximation using the finite element method, and the numerical solution via nonsmooth methods. Incorporating sparsity-promoting terms in the cost function is practically useful for beam vibration models and results in the localization of the control action that facilitates the placement of actuators or control devices. We consider two types of sparsity-inducing penalizers: the L 1 $$ {L}^1 $$ -norm and the L 0 $$ {L}^0 $$ -penalizer, which measures function support. We analyze discretized problems utilizing linear finite elements with a locking-free scheme to approximate the states and adjoint states. We confirm that this approximation has the looking-free property required to achieve a linear convergence linear order of approximation for L 1 $$ {L}^1 $$ control case and depending on the set of switching points in the L 0 $$ {L}^0 $$ controls. This is similar to the purely L 2 $$ {L}^2 $$ -norm penalized optimal control, where the order of approximation is independent of the thickness of the beam.

Abstract Image

基于无锁紧有限元近似的Timoshenko光束稀疏最优控制
本文研究了具有稀疏控制的Timoshenko梁的最优控制问题,用有限元法对其进行数值逼近,并用非光滑方法对其进行数值求解。在代价函数中加入促进稀疏性的项对于梁振动模型实际上是有用的,并导致控制作用的局部化,从而便于执行器或控制装置的放置。我们考虑两种类型的稀疏性诱导惩罚器:L1 $$ {L}^1 $$ -范数和L0 $$ {L}^0 $$ -惩罚器,它们测量函数支持。我们利用无锁格式的线性有限元来近似状态和伴随状态来分析离散问题。我们确认该近似具有实现L1 $$ {L}^1 $$控制情况下线性收敛所需的无外观性质,并取决于L0 $$ {L}^0 $$控制中的切换点集。这类似于纯粹的L2 $$ {L}^2 $$ -范数惩罚最优控制,其中近似的顺序与梁的厚度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信