Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, Paul Wild
{"title":"A point-free perspective on lax extensions and predicate liftings","authors":"Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, Paul Wild","doi":"10.1017/s096012952300035x","DOIUrl":null,"url":null,"abstract":"Lax extensions of set functors play a key role in various areas, including topology, concurrent systems, and modal logic, while predicate liftings provide a generic semantics of modal operators. We take a fresh look at the connection between lax extensions and predicate liftings from the point of view of quantale-enriched relations. Using this perspective, we show in particular that various fundamental concepts and results arise naturally and their proofs become very elementary. Ultimately, we prove that every lax extension is induced by a class of predicate liftings; we discuss several implications of this result.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"38 12","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s096012952300035x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Lax extensions of set functors play a key role in various areas, including topology, concurrent systems, and modal logic, while predicate liftings provide a generic semantics of modal operators. We take a fresh look at the connection between lax extensions and predicate liftings from the point of view of quantale-enriched relations. Using this perspective, we show in particular that various fundamental concepts and results arise naturally and their proofs become very elementary. Ultimately, we prove that every lax extension is induced by a class of predicate liftings; we discuss several implications of this result.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.