{"title":"ADDITIVE COMPLETION OF THIN SETS","authors":"JIN-HUI FANG, CSABA SÁNDOR","doi":"10.1017/s0004972723001016","DOIUrl":null,"url":null,"abstract":"Two sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline1.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of positive integers are called <jats:italic>exact additive complements</jats:italic> if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline2.png\" /> <jats:tex-math> $A+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains all sufficiently large integers and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline3.png\" /> <jats:tex-math> $A(x)B(x)/x\\rightarrow 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline4.png\" /> <jats:tex-math> $A=\\{a_1<a_2<\\cdots \\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline5.png\" /> <jats:tex-math> $A(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the counting function of <jats:italic>A</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline6.png\" /> <jats:tex-math> $a^*(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the largest element in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline7.png\" /> <jats:tex-math> $A\\bigcap [1,x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Following the work of Ruzsa [‘Exact additive complements’, <jats:italic>Quart. J. Math.</jats:italic>68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, <jats:italic>Combinatorica</jats:italic>39 (2019), 813–823], we prove that, for exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline8.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline9.png\" /> <jats:tex-math> ${a_{n+1}}/ {na_n}\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}A(x)B(x)-x\\geqslant \\frac{a^*(x)}{A(x)}+o\\bigg(\\frac{a^*(x)}{A(x)^2}\\bigg) \\quad\\mbox{as } x\\rightarrow +\\infty.\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We also construct exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline10.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline11.png\" /> <jats:tex-math> ${a_{n+1}}/{na_n}\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_eqnu2.png\" /> <jats:tex-math> $$ \\begin{align*}A(x)B(x)-x\\leqslant \\frac{a^*(x)}{A(x)}+(1+o(1))\\bigg(\\frac{a^*(x)}{A(x)^2}\\bigg)\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> for infinitely many positive integers <jats:italic>x</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"220 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two sets $A,B$ of positive integers are called exact additive complements if $A+B$ contains all sufficiently large integers and $A(x)B(x)/x\rightarrow 1$ . For $A=\{a_1<a_2<\cdots \}$ , let $A(x)$ denote the counting function of A and let $a^*(x)$ denote the largest element in $A\bigcap [1,x]$ . Following the work of Ruzsa [‘Exact additive complements’, Quart. J. Math.68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, Combinatorica39 (2019), 813–823], we prove that, for exact additive complements $A,B$ with ${a_{n+1}}/ {na_n}\rightarrow \infty $ , $$ \begin{align*}A(x)B(x)-x\geqslant \frac{a^*(x)}{A(x)}+o\bigg(\frac{a^*(x)}{A(x)^2}\bigg) \quad\mbox{as } x\rightarrow +\infty.\end{align*} $$ We also construct exact additive complements $A,B$ with ${a_{n+1}}/{na_n}\rightarrow \infty $ such that $$ \begin{align*}A(x)B(x)-x\leqslant \frac{a^*(x)}{A(x)}+(1+o(1))\bigg(\frac{a^*(x)}{A(x)^2}\bigg)\end{align*} $$ for infinitely many positive integers x.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society