{"title":"ON A CONJECTURE OF LENNY JONES ABOUT CERTAIN MONOGENIC POLYNOMIALS","authors":"SUMANDEEP KAUR, SURENDER KUMAR","doi":"10.1017/s0004972723001119","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline1.png\" /> <jats:tex-math> $K={\\mathbb {Q}}(\\theta )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an algebraic number field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline2.png\" /> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying a monic irreducible polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline3.png\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>n</jats:italic> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline4.png\" /> <jats:tex-math> ${\\mathbb {Q}}.$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> The polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline5.png\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be monogenic if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline6.png\" /> <jats:tex-math> $\\{1,\\theta ,\\ldots ,\\theta ^{n-1}\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an integral basis of <jats:italic>K</jats:italic>. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, <jats:italic>Bull. Aust. Math. Soc.</jats:italic>100 (2019), 239–244] conjectured that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline7.png\" /> <jats:tex-math> $n\\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline8.png\" /> <jats:tex-math> $1\\le m\\le n-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline9.png\" /> <jats:tex-math> $\\gcd (n,mB)=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>A</jats:italic> is a prime number, then the polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline10.png\" /> <jats:tex-math> $x^n+A (Bx+1)^m\\in {\\mathbb {Z}}[x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is monogenic if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline11.png\" /> <jats:tex-math> $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is square-free. We prove that this conjecture is true.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"220 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $K={\mathbb {Q}}(\theta )$ be an algebraic number field with $\theta $ satisfying a monic irreducible polynomial $f(x)$ of degree n over ${\mathbb {Q}}.$ The polynomial $f(x)$ is said to be monogenic if $\{1,\theta ,\ldots ,\theta ^{n-1}\}$ is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc.100 (2019), 239–244] conjectured that if $n\ge 3$ , $1\le m\le n-1$ , $\gcd (n,mB)=1$ and A is a prime number, then the polynomial $x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$ is monogenic if and only if $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ is square-free. We prove that this conjecture is true.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society