Andrea Braides, Giuseppe Cosma Brusca, Davide Donati
{"title":"Another Look at Elliptic Homogenization","authors":"Andrea Braides, Giuseppe Cosma Brusca, Davide Donati","doi":"10.1007/s00032-023-00389-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the limit of sequences of normalized (<i>s</i>, 2)-Gagliardo seminorms with an oscillating coefficient as <span>\\(s\\rightarrow 1\\)</span>. In a seminal paper by Bourgain et al. (Another look at Sobolev spaces. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 439–455, 2001) it is proven that if the coefficient is constant then this sequence <span>\\(\\Gamma \\)</span>-converges to a multiple of the Dirichlet integral. Here we prove that, if we denote by <span>\\(\\varepsilon \\)</span> the scale of the oscillations and we assume that <span>\\(1-s<\\!<\\varepsilon ^2\\)</span>, this sequence converges to the homogenized functional formally obtained by separating the effects of <i>s</i> and <span>\\(\\varepsilon \\)</span>; that is, by the homogenization as <span>\\(\\varepsilon \\rightarrow 0\\)</span> of the Dirichlet integral with oscillating coefficient obtained by formally letting <span>\\(s\\rightarrow 1\\)</span> first.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-023-00389-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the limit of sequences of normalized (s, 2)-Gagliardo seminorms with an oscillating coefficient as \(s\rightarrow 1\). In a seminal paper by Bourgain et al. (Another look at Sobolev spaces. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 439–455, 2001) it is proven that if the coefficient is constant then this sequence \(\Gamma \)-converges to a multiple of the Dirichlet integral. Here we prove that, if we denote by \(\varepsilon \) the scale of the oscillations and we assume that \(1-s<\!<\varepsilon ^2\), this sequence converges to the homogenized functional formally obtained by separating the effects of s and \(\varepsilon \); that is, by the homogenization as \(\varepsilon \rightarrow 0\) of the Dirichlet integral with oscillating coefficient obtained by formally letting \(s\rightarrow 1\) first.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.