A Lie–Rinehart algebra in general relativity

Pub Date : 2023-11-20 DOI:10.4310/pamq.2023.v19.n4.a2
Christian Blohmann, Michele Schiavina, Alan Weinstein
{"title":"A Lie–Rinehart algebra in general relativity","authors":"Christian Blohmann, Michele Schiavina, Alan Weinstein","doi":"10.4310/pamq.2023.v19.n4.a2","DOIUrl":null,"url":null,"abstract":"We construct a Lie–Rinehart algebra over an infinitesimal extension of the space of initial value fields for Einstein’s equations. The bracket relations in this algebra are precisely those of the constraints for the initial value problem. The Lie–Rinehart algebra comes from a slight generalization of a Lie algebroid in which the algebra consists of sections of a sheaf rather than a vector bundle. (An actual Lie algebroid had been previously constructed by Blohmann, Fernandes, and Weinstein over a much larger extension.) The construction uses the BV–BFV (Batalin–Fradkin–Vilkovisky) approach to boundary value problems, starting with the Einstein equations themselves, to construct an $L_\\infty$-algebroid over a graded manifold which extends the initial data. The Lie–Rinehart algebra is then constructed by a change of variables. One of the consequences of the BV–BFV approach is a proof that the coisotropic property of the constraint set follows from the invariance of the Einstein equations under space-time diffeomorphisms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We construct a Lie–Rinehart algebra over an infinitesimal extension of the space of initial value fields for Einstein’s equations. The bracket relations in this algebra are precisely those of the constraints for the initial value problem. The Lie–Rinehart algebra comes from a slight generalization of a Lie algebroid in which the algebra consists of sections of a sheaf rather than a vector bundle. (An actual Lie algebroid had been previously constructed by Blohmann, Fernandes, and Weinstein over a much larger extension.) The construction uses the BV–BFV (Batalin–Fradkin–Vilkovisky) approach to boundary value problems, starting with the Einstein equations themselves, to construct an $L_\infty$-algebroid over a graded manifold which extends the initial data. The Lie–Rinehart algebra is then constructed by a change of variables. One of the consequences of the BV–BFV approach is a proof that the coisotropic property of the constraint set follows from the invariance of the Einstein equations under space-time diffeomorphisms.
分享
查看原文
广义相对论中的李-莱因哈特代数
我们在爱因斯坦方程初值域空间的无限小扩展上构造了一个Lie-Rinehart代数。该代数中的括号关系正是初值问题的约束关系。李-莱因哈特代数来自于李代数的一个轻微推广,在李代数中,代数由一个束的部分而不是一个向量束组成。(一个真正的李代数此前已经由Blohmann, Fernandes和Weinstein构造了一个更大的扩展。)该构造使用BV-BFV (Batalin-Fradkin-Vilkovisky)方法来解决边值问题,从爱因斯坦方程本身开始,在扩展初始数据的梯度流形上构造$L_\infty$ -代数体。然后通过变量的变换来构造Lie-Rinehart代数。BV-BFV方法的结果之一是证明了约束集的共同性性是由时空微分同态下爱因斯坦方程的不变性推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信