Lower bounds for Steklov eigenfunctions

Pub Date : 2023-11-20 DOI:10.4310/pamq.2023.v19.n4.a7
Jeffrey Galkowski, John A. Toth
{"title":"Lower bounds for Steklov eigenfunctions","authors":"Jeffrey Galkowski, John A. Toth","doi":"10.4310/pamq.2023.v19.n4.a7","DOIUrl":null,"url":null,"abstract":"Let $(\\Omega,g)$ be a compact, real analytic Riemannian manifold with real analytic boundary $\\partial \\Omega = M$. We give $L^2$-lower bounds for Steklov eigenfunctions and their restrictions to interior hypersurfaces $H \\subset \\Omega^\\circ$ in a geometrically defined neighborhood of $M$. Our results are optimal in the entire geometric neighborhood and complement the results on eigenfunction upper bounds in $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\\textrm{GT19}]}$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Let $(\Omega,g)$ be a compact, real analytic Riemannian manifold with real analytic boundary $\partial \Omega = M$. We give $L^2$-lower bounds for Steklov eigenfunctions and their restrictions to interior hypersurfaces $H \subset \Omega^\circ$ in a geometrically defined neighborhood of $M$. Our results are optimal in the entire geometric neighborhood and complement the results on eigenfunction upper bounds in $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\textrm{GT19}]}$
分享
查看原文
Steklov特征函数的下界
设$(\Omega,g)$是一个紧实解析黎曼流形,具有实解析边界$\partial \Omega = M$。我们给出了在几何定义的$M$邻域内Steklov特征函数的$L^2$ -下界及其对内部超曲面$H \subset \Omega^\circ$的限制。我们的结果在整个几何邻域内是最优的,并且补充了特征函数上界的结果 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\textrm{GT19}]}$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信