{"title":"Which Hessenberg varieties are GKM?","authors":"Rebecca Goldin, Julianna Tymoczko","doi":"10.4310/pamq.2023.v19.n4.a8","DOIUrl":null,"url":null,"abstract":"Hessenberg varieties $\\mathcal{H}(X,H)$ form a class of subvarieties of the flag variety $G/B$, parameterized by an operator $X$ and certain subspaces $H$ of the Lie algebra of $G$. We identify several families of Hessenberg varieties in type $A_{n-1}$ that are $T$-stable subvarieties of $G/B$, as well as families that are invariant under a subtorus $K$ of $T$. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the $T$-stable Hessenberg varieties, we identify several that are <i>GKM spaces</i>, meaning $T$ acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type $A_{n-1}$ and in general Lie type.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"195 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Hessenberg varieties $\mathcal{H}(X,H)$ form a class of subvarieties of the flag variety $G/B$, parameterized by an operator $X$ and certain subspaces $H$ of the Lie algebra of $G$. We identify several families of Hessenberg varieties in type $A_{n-1}$ that are $T$-stable subvarieties of $G/B$, as well as families that are invariant under a subtorus $K$ of $T$. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the $T$-stable Hessenberg varieties, we identify several that are GKM spaces, meaning $T$ acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type $A_{n-1}$ and in general Lie type.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.