Seismic imaging with generalized Radon transforms: stability of the Bolker condition

Pub Date : 2023-11-20 DOI:10.4310/pamq.2023.v19.n4.a11
Peer Christian Kunstmann, Eric Todd Quinto, Andreas Rieder
{"title":"Seismic imaging with generalized Radon transforms: stability of the Bolker condition","authors":"Peer Christian Kunstmann, Eric Todd Quinto, Andreas Rieder","doi":"10.4310/pamq.2023.v19.n4.a11","DOIUrl":null,"url":null,"abstract":"Generalized Radon transforms are Fourier integral operators which are used, for instance, as imaging models in geophysical exploration. They appear naturally when linearizing about a known background compression wave speed. In this work we first consider a linearly increasing background velocity in two spatial dimensions. We verify the Bolker condition for the zero-offset scanning geometry and provide meaningful arguments for it to hold even if the common offset is positive. Based on this result we suggest an imaging operator for which we calculate the top order symbol in the zero-offset case to study how it maps singularities. Second, to support the usage of background models obtained from linear regression we present a stability result for the Bolker condition under perturbations of the background velocity and of the offset.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Generalized Radon transforms are Fourier integral operators which are used, for instance, as imaging models in geophysical exploration. They appear naturally when linearizing about a known background compression wave speed. In this work we first consider a linearly increasing background velocity in two spatial dimensions. We verify the Bolker condition for the zero-offset scanning geometry and provide meaningful arguments for it to hold even if the common offset is positive. Based on this result we suggest an imaging operator for which we calculate the top order symbol in the zero-offset case to study how it maps singularities. Second, to support the usage of background models obtained from linear regression we present a stability result for the Bolker condition under perturbations of the background velocity and of the offset.
分享
查看原文
广义Radon变换地震成像:Bolker条件的稳定性
广义Radon变换是一种傅里叶积分算子,例如用于地球物理勘探中的成像模型。当对已知的背景压缩波速度进行线性化时,它们自然出现。在这项工作中,我们首先考虑在两个空间维度上线性增加的背景速度。我们验证了零偏移扫描几何的Bolker条件,并为它提供了有意义的参数,即使公共偏移为正。基于这一结果,我们提出了一种成像算子,我们计算了零偏移情况下的上阶符号,以研究它如何映射奇点。其次,为了支持从线性回归中获得的背景模型的使用,我们给出了背景速度和偏移量扰动下Bolker条件的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信