Hilbert reciprocity using $K$-theory localization

Pub Date : 2023-04-07 DOI:10.4310/pamq.2023.v19.n2.a1
Oliver Braunling
{"title":"Hilbert reciprocity using $K$-theory localization","authors":"Oliver Braunling","doi":"10.4310/pamq.2023.v19.n2.a1","DOIUrl":null,"url":null,"abstract":"Usually the boundary map in $K$-theory localization only gives the tame symbol at $K_2$. It sees the tamely ramified part of the Hilbert symbol, but no wild ramification. Gillet has shown how to prove Weil reciprocity using such boundary maps. This implies Hilbert reciprocity for curves over finite fields. However, phrasing Hilbert reciprocity for number fields in a similar way fails because it crucially hinges on wild ramification effects. We resolve this issue, except at $p=2$. Our idea is to pinch singularities near the ramification locus. This fattens up $K$-theory and makes the wild symbol visible as a boundary map.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Usually the boundary map in $K$-theory localization only gives the tame symbol at $K_2$. It sees the tamely ramified part of the Hilbert symbol, but no wild ramification. Gillet has shown how to prove Weil reciprocity using such boundary maps. This implies Hilbert reciprocity for curves over finite fields. However, phrasing Hilbert reciprocity for number fields in a similar way fails because it crucially hinges on wild ramification effects. We resolve this issue, except at $p=2$. Our idea is to pinch singularities near the ramification locus. This fattens up $K$-theory and makes the wild symbol visible as a boundary map.
分享
查看原文
利用K理论定位的希尔伯特互易
通常在$K$理论定位中的边界图只给出$K_2$的驯服符号。它看到了希尔伯特符号中温顺的分支部分,但没有狂野的分支。Gillet展示了如何使用这样的边界图来证明Weil互易性。这意味着有限域上曲线的希尔伯特互易性。然而,以类似的方式描述希尔伯特互易性是失败的,因为它关键地取决于野生分支效应。我们解决了这个问题,除了$p=2$。我们的想法是掐取分支轨迹附近的奇点。这使$K$-理论更加丰富,并使狂野符号作为边界图可见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信