The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups

IF 1.2 3区 数学 Q1 MATHEMATICS
Julián Agredo, Franco Fagnola, Damiano Poletti
{"title":"The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups","authors":"Julián Agredo, Franco Fagnola, Damiano Poletti","doi":"10.1007/s00032-022-00355-0","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate a method for finding the decoherence-free subalgebra <span>\\({\\mathcal {N}}({\\mathcal {T}})\\)</span> of a Gaussian quantum Markov semigroup on the von Neumann algebra <span>\\({\\mathcal {B}}(\\Gamma (\\mathbb {C}^d))\\)</span> of all bounded operator on the Fock space <span>\\(\\Gamma (\\mathbb {C}^d)\\)</span> on <span>\\(\\mathbb {C}^d\\)</span>. We show that <span>\\({\\mathcal {N}}({\\mathcal {T}})\\)</span> is a type I von Neumann algebra <span>\\(L^\\infty (\\mathbb {R}^{d_c};\\mathbb {C}){\\overline{\\otimes }}{\\mathcal {B}}(\\Gamma (\\mathbb {C}^{d_f}))\\)</span> determined, up to unitary equivalence, by two natural numbers <span>\\(d_c,d_f\\le d\\)</span>. This result is illustrated by some applications and examples.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"224 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-022-00355-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We demonstrate a method for finding the decoherence-free subalgebra \({\mathcal {N}}({\mathcal {T}})\) of a Gaussian quantum Markov semigroup on the von Neumann algebra \({\mathcal {B}}(\Gamma (\mathbb {C}^d))\) of all bounded operator on the Fock space \(\Gamma (\mathbb {C}^d)\) on \(\mathbb {C}^d\). We show that \({\mathcal {N}}({\mathcal {T}})\) is a type I von Neumann algebra \(L^\infty (\mathbb {R}^{d_c};\mathbb {C}){\overline{\otimes }}{\mathcal {B}}(\Gamma (\mathbb {C}^{d_f}))\) determined, up to unitary equivalence, by two natural numbers \(d_c,d_f\le d\). This result is illustrated by some applications and examples.

高斯量子马尔可夫半群的无退相干子代数
我们证明了在Fock空间\(\Gamma (\mathbb {C}^d)\)上\(\mathbb {C}^d\)上所有有界算子的von Neumann代数\({\mathcal {B}}(\Gamma (\mathbb {C}^d))\)上寻找高斯量子Markov半群的无退相干子代数\({\mathcal {N}}({\mathcal {T}})\)的一种方法。我们证明\({\mathcal {N}}({\mathcal {T}})\)是一个I型冯·诺伊曼代数\(L^\infty (\mathbb {R}^{d_c};\mathbb {C}){\overline{\otimes }}{\mathcal {B}}(\Gamma (\mathbb {C}^{d_f}))\),由两个自然数确定,直到酉等价\(d_c,d_f\le d\)。通过一些应用和实例说明了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists. Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信