Smart grid co-simulation with MOSAIK and HLA: a comparison study

IF 2.4 Q1 Computer Science
C. Steinbrink, A. A. van der Meer, M. Cvetkovic, D. Babazadeh, S. Rohjans, P. Palensky, S. Lehnhoff
{"title":"Smart grid co-simulation with MOSAIK and HLA: a comparison study","authors":"C. Steinbrink, A. A. van der Meer, M. Cvetkovic, D. Babazadeh, S. Rohjans, P. Palensky, S. Lehnhoff","doi":"10.1007/s00450-017-0379-y","DOIUrl":null,"url":null,"abstract":"Evaluating new technological developments for energy systems is becoming more and more complex. The overall application environment is a continuously growing and interconnected cyber-physical system so that analytical assessment is practically impossible to realize. Consequently, new solutions must be evaluated in simulation studies. Due to the interdisciplinarity of the simulation scenarios, various heterogeneous tools must be connected. This approach is known as co-simulation. During the last years, different approaches have been developed or adapted for applications in energy systems. In this paper, two co-simulation approaches are compared that follow generic, versatile concepts. The tool <span>mosaik</span>, which has been explicitly developed for the purpose of co-simulation in complex energy systems, is compared to the High Level Architecture (HLA), which possesses a domain-independent scope but is often employed in the energy domain. The comparison is twofold, considering the tools’ conceptual architectures as well as results from the simulation of representative test cases. It suggests that <span>mosaik</span> may be the better choice for entry-level, prototypical co-simulation while HLA is more suited for complex and extensive studies.","PeriodicalId":41265,"journal":{"name":"SICS Software-Intensive Cyber-Physical Systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICS Software-Intensive Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00450-017-0379-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 23

Abstract

Evaluating new technological developments for energy systems is becoming more and more complex. The overall application environment is a continuously growing and interconnected cyber-physical system so that analytical assessment is practically impossible to realize. Consequently, new solutions must be evaluated in simulation studies. Due to the interdisciplinarity of the simulation scenarios, various heterogeneous tools must be connected. This approach is known as co-simulation. During the last years, different approaches have been developed or adapted for applications in energy systems. In this paper, two co-simulation approaches are compared that follow generic, versatile concepts. The tool mosaik, which has been explicitly developed for the purpose of co-simulation in complex energy systems, is compared to the High Level Architecture (HLA), which possesses a domain-independent scope but is often employed in the energy domain. The comparison is twofold, considering the tools’ conceptual architectures as well as results from the simulation of representative test cases. It suggests that mosaik may be the better choice for entry-level, prototypical co-simulation while HLA is more suited for complex and extensive studies.
基于MOSAIK和HLA的智能电网联合仿真比较研究
评估能源系统的新技术发展正变得越来越复杂。整个应用环境是一个不断增长和相互关联的信息物理系统,因此分析评估实际上是不可能实现的。因此,必须在模拟研究中评估新的解决方案。由于仿真场景的跨学科性,必须连接各种异构工具。这种方法被称为联合模拟。在过去的几年里,不同的方法已经被开发或调整用于能源系统的应用。本文比较了遵循通用、通用概念的两种联合仿真方法。mosaik工具是为复杂能源系统的联合仿真而开发的,它与高级体系结构(HLA)进行了比较,后者具有领域无关的范围,但通常用于能源领域。考虑到工具的概念架构和典型测试用例的模拟结果,比较是双重的。这表明mosaik可能是入门级、原型化联合模拟的更好选择,而HLA更适合于复杂和广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SICS Software-Intensive Cyber-Physical Systems
SICS Software-Intensive Cyber-Physical Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信