Finite volume ADI scheme for hybrid dimension heat conduction problems set in a cross-shaped domain

Pub Date : 2022-03-31 DOI:10.1007/s10986-022-09561-0
Vytenis Šumskas, Raimondas Čiegis
{"title":"Finite volume ADI scheme for hybrid dimension heat conduction problems set in a cross-shaped domain","authors":"Vytenis Šumskas, Raimondas Čiegis","doi":"10.1007/s10986-022-09561-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct an alternating direction implicit (ADI) type finite volume numerical scheme to solve a nonclassical nonstationary heat conduction problem set in a 2D cross-shaped domain. We reduce the original model to a hybrid dimension model in a large part of the domain. We define special conjugation conditions between 2D and 1D parts. We apply the finite volume method to approximate spatial differential operators and use ADI splitting for time integration. The ADI scheme is unconditionally stable, and under a mix of Dirichlet and Neumann boundary conditions, the approximation error is of second order in space and time. The results of computational experiments confirm the theoretical error analysis. We compare visual representations and computational times for various sizes of reduced dimension zones.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-022-09561-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we construct an alternating direction implicit (ADI) type finite volume numerical scheme to solve a nonclassical nonstationary heat conduction problem set in a 2D cross-shaped domain. We reduce the original model to a hybrid dimension model in a large part of the domain. We define special conjugation conditions between 2D and 1D parts. We apply the finite volume method to approximate spatial differential operators and use ADI splitting for time integration. The ADI scheme is unconditionally stable, and under a mix of Dirichlet and Neumann boundary conditions, the approximation error is of second order in space and time. The results of computational experiments confirm the theoretical error analysis. We compare visual representations and computational times for various sizes of reduced dimension zones.

分享
查看原文
交叉区域混合尺寸热传导问题的有限体积ADI格式
本文构造了一个交替方向隐式(ADI)型有限体积数值格式来求解二维交叉区域上的非经典非平稳热传导问题集。在很大程度上,我们将原始模型简化为混合维度模型。我们定义了二维和一维零件之间的特殊共轭条件。我们用有限体积法逼近空间微分算子,用ADI分裂法进行时间积分。ADI格式是无条件稳定的,在Dirichlet和Neumann混合边界条件下,其近似误差在空间和时间上都是二阶的。计算实验结果证实了理论误差分析。我们比较了不同尺寸的降维区域的视觉表示和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信