Jibing Gong, Yao Wan, Ye Liu, Xuewen Li, Yi Zhao, Cheng Wang, Yuting Lin, Xiaohan Fang, Wenzheng Feng, Jingyi Zhang, Jie Tang
{"title":"Reinforced MOOCs Concept Recommendation in Heterogeneous Information Networks","authors":"Jibing Gong, Yao Wan, Ye Liu, Xuewen Li, Yi Zhao, Cheng Wang, Yuting Lin, Xiaohan Fang, Wenzheng Feng, Jingyi Zhang, Jie Tang","doi":"https://dl.acm.org/doi/10.1145/3580510","DOIUrl":null,"url":null,"abstract":"<p><b>Massive open online courses (MOOCs)</b>, which offer open access and widespread interactive participation through the internet, are quickly becoming the preferred method for online and remote learning. Several MOOC platforms offer the service of course recommendation to users, to improve the learning experience of users. Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a fine-grained way. We put forward a novel approach, termed <b>HinCRec-RL, for <underline>C</underline>oncept <underline>Rec</underline>ommendation in MOOCs, which is based on <underline>H</underline>eterogeneous <underline>I</underline>nformation <underline>N</underline>etworks and <underline>R</underline>einforcement <underline>L</underline>earning</b>. In particular, we propose to shape the problem of concept recommendation within a reinforcement learning framework to characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we propose to form the interactions among users, courses, videos, and concepts into a <b>heterogeneous information network (HIN)</b> to learn the semantic user representations better. We then employ an attentional graph neural network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a real-world dataset collected from a Chinese MOOC platform, <i>XuetangX</i>, to validate the efficacy of our proposed HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well when compared with several state-of-the-art models.</p>","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"43 20","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3580510","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Massive open online courses (MOOCs), which offer open access and widespread interactive participation through the internet, are quickly becoming the preferred method for online and remote learning. Several MOOC platforms offer the service of course recommendation to users, to improve the learning experience of users. Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a fine-grained way. We put forward a novel approach, termed HinCRec-RL, for Concept Recommendation in MOOCs, which is based on Heterogeneous Information Networks and Reinforcement Learning. In particular, we propose to shape the problem of concept recommendation within a reinforcement learning framework to characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we propose to form the interactions among users, courses, videos, and concepts into a heterogeneous information network (HIN) to learn the semantic user representations better. We then employ an attentional graph neural network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a real-world dataset collected from a Chinese MOOC platform, XuetangX, to validate the efficacy of our proposed HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well when compared with several state-of-the-art models.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.