{"title":"Affine Variety Codes over a Hyperelliptic Curve","authors":"N. Patanker, S. K. Singh","doi":"10.1134/s0032946021010051","DOIUrl":null,"url":null,"abstract":"<p>We estimate the minimum distance of primary monomial affine variety codes defined from a hyperelliptic curve <span>\\({x^5} + x - {y^2}\\)</span> over <span>\\(\\mathbb{F}_7\\)</span>. To estimate the minimum distance of the codes, we apply symbolic computations implementing the techniques suggested by Geil and Özbudak. For some of these codes, we also obtain the symbol-pair distance. Furthermore, lower bounds on the generalized Hamming weights of the constructed codes are obtained. The proposed method to calculate the generalized Hamming weights can be applied to any primary monomial affine variety codes.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":"8 23","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0032946021010051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
We estimate the minimum distance of primary monomial affine variety codes defined from a hyperelliptic curve \({x^5} + x - {y^2}\) over \(\mathbb{F}_7\). To estimate the minimum distance of the codes, we apply symbolic computations implementing the techniques suggested by Geil and Özbudak. For some of these codes, we also obtain the symbol-pair distance. Furthermore, lower bounds on the generalized Hamming weights of the constructed codes are obtained. The proposed method to calculate the generalized Hamming weights can be applied to any primary monomial affine variety codes.
期刊介绍:
Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.