Affine Variety Codes over a Hyperelliptic Curve

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
N. Patanker, S. K. Singh
{"title":"Affine Variety Codes over a Hyperelliptic Curve","authors":"N. Patanker, S. K. Singh","doi":"10.1134/s0032946021010051","DOIUrl":null,"url":null,"abstract":"<p>We estimate the minimum distance of primary monomial affine variety codes defined from a hyperelliptic curve <span>\\({x^5} + x - {y^2}\\)</span> over <span>\\(\\mathbb{F}_7\\)</span>. To estimate the minimum distance of the codes, we apply symbolic computations implementing the techniques suggested by Geil and Özbudak. For some of these codes, we also obtain the symbol-pair distance. Furthermore, lower bounds on the generalized Hamming weights of the constructed codes are obtained. The proposed method to calculate the generalized Hamming weights can be applied to any primary monomial affine variety codes.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":"8 23","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0032946021010051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

We estimate the minimum distance of primary monomial affine variety codes defined from a hyperelliptic curve \({x^5} + x - {y^2}\) over \(\mathbb{F}_7\). To estimate the minimum distance of the codes, we apply symbolic computations implementing the techniques suggested by Geil and Özbudak. For some of these codes, we also obtain the symbol-pair distance. Furthermore, lower bounds on the generalized Hamming weights of the constructed codes are obtained. The proposed method to calculate the generalized Hamming weights can be applied to any primary monomial affine variety codes.

超椭圆曲线上的仿射变异码
我们估计了从超椭圆曲线上定义的初级单次仿射变异码的最小距离 \({x^5} + x - {y^2}\) 结束 \(\mathbb{F}_7\). 为了估计码的最小距离,我们应用符号计算实现Geil和Özbudak提出的技术。对于其中的一些码,我们也得到了符号对距离。进一步给出了构造码的广义汉明权值的下界。所提出的广义汉明权值的计算方法适用于任何原生单仿射变码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Problems of Information Transmission
Problems of Information Transmission 工程技术-计算机:理论方法
CiteScore
2.00
自引率
25.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信