Static and Streaming Data Structures for Fréchet Distance Queries

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Arnold Filtser, Omrit Filtser
{"title":"Static and Streaming Data Structures for Fréchet Distance Queries","authors":"Arnold Filtser, Omrit Filtser","doi":"https://dl.acm.org/doi/10.1145/3610227","DOIUrl":null,"url":null,"abstract":"<p>Given a curve <i>P</i> with points in \\(\\mathbb {R}^d \\) in a streaming fashion, and parameters ε &gt; 0 and <i>k</i>, we construct a distance oracle that uses \\(O(\\frac{1}{\\varepsilon })^{kd}\\log \\varepsilon ^{-1} \\) space, and given a query curve <i>Q</i> with <i>k</i> points in \\(\\mathbb {R}^d \\), returns in \\(\\tilde{O}(kd) \\) time a 1 + ε approximation of the discrete Fréchet distance between <i>Q</i> and <i>P</i>. In addition, we construct simplifications in the streaming model, oracle for distance queries to a sub-curve (in the static setting), and introduce the zoom-in problem. Our algorithms work in any dimension <i>d</i>, and therefore we generalize some useful tools and algorithms for curves under the discrete Fréchet distance to work efficiently in high dimensions.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 13","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3610227","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a curve P with points in \(\mathbb {R}^d \) in a streaming fashion, and parameters ε > 0 and k, we construct a distance oracle that uses \(O(\frac{1}{\varepsilon })^{kd}\log \varepsilon ^{-1} \) space, and given a query curve Q with k points in \(\mathbb {R}^d \), returns in \(\tilde{O}(kd) \) time a 1 + ε approximation of the discrete Fréchet distance between Q and P. In addition, we construct simplifications in the streaming model, oracle for distance queries to a sub-curve (in the static setting), and introduce the zoom-in problem. Our algorithms work in any dimension d, and therefore we generalize some useful tools and algorithms for curves under the discrete Fréchet distance to work efficiently in high dimensions.

用于远程查询的静态和流数据结构
给定点为\(\mathbb {R}^d \)的曲线P以流形式存在,参数ε &gt;0和k,我们构造了一个使用\(O(\frac{1}{\varepsilon })^{kd}\log \varepsilon ^{-1} \)空间的距离oracle,并给出了一条查询曲线Q,在\(\mathbb {R}^d \)中有k个点,在\(\tilde{O}(kd) \)时间内返回Q和p之间离散fr切距离的1 + ε近似值。此外,我们在流模型中构造了简化,oracle对子曲线进行距离查询(在静态设置下),并引入了放大问题。我们的算法适用于任何维d,因此我们推广了一些有用的工具和算法,用于离散fr切距离下的曲线,以有效地在高维上工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信