{"title":"Collapsing the Tower - On the Complexity of Multistage Stochastic IPs","authors":"Kim-Manuel Klein, Janina Reuter","doi":"https://dl.acm.org/doi/10.1145/3604554","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the computational complexity of solving a class of block structured integer programs (IPs) - so called multistage stochastic IPs. A multistage stochastic IP is an IP of the form min {<i>c</i><sup>⊺</sup><i>x</i>∣<i>Ax</i> = <i>b</i>, <i>x</i> ≥ <b>0</b>, <i>x</i> integral} where the constraint matrix <i>A</i> consists of small block matrices ordered on the diagonal line and for each stage there are larger blocks with few columns connecting the blocks in a tree like fashion. Over the last years there was enormous progress in the area of block structured IPs. For many of the known block IP classes - such as <i>n</i>-fold, tree-fold, and two-stage stochastic IPs, nearly matching upper and lower bounds are known concerning their computational complexity. One of the major gaps that remained however was the parameter dependency in the running time for an algorithm solving multistage stochastic IPs. Previous algorithms require a tower of <i>t</i> exponentials, where <i>t</i> is the number of stages. In contrast, only a double exponential lower bound was known based on the exponential time hypothesis. In this paper we show that the tower of <i>t</i> exponentials is actually not necessary. We show an improved running time of \\(2^{(d\\left\\Vert A \\right\\Vert _\\infty)^{\\mathcal {O}(d^{3t+1})}} \\cdot rn\\log ^{\\mathcal {O}(2^d)}(rn) \\) for the algorithm solving multistage stochastic IPs, where <i>d</i> is the sum of columns in the connecting blocks and <i>rn</i> is the number of rows. Hence, we obtain the first bound by an elementary function for the running time of an algorithm solving multistage stochastic IPs. In contrast to previous works, our algorithm has only a triple exponential dependency on the parameters and only doubly exponential for every constant <i>t</i>. By this we come very close to the known double exponential bound that holds already for two-stage stochastic IPs, i.e. multistage stochastic IPs with two stages. </p><p>The improved running time of the algorithm is based on new bounds for the proximity of multistage stochastic IPs. The idea behind the bound is based on generalization of a structural lemma originally used for two-stage stochastic IPs. While the structural lemma requires iteration to be applied to multistage stochastic IPs, our generalization directly applies to inherent combinatorial properties of multiple stages. Already a special case of our lemma yields an improved bound for the Graver complexity of multistage stochastic IPs.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 22","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3604554","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the computational complexity of solving a class of block structured integer programs (IPs) - so called multistage stochastic IPs. A multistage stochastic IP is an IP of the form min {c⊺x∣Ax = b, x ≥ 0, x integral} where the constraint matrix A consists of small block matrices ordered on the diagonal line and for each stage there are larger blocks with few columns connecting the blocks in a tree like fashion. Over the last years there was enormous progress in the area of block structured IPs. For many of the known block IP classes - such as n-fold, tree-fold, and two-stage stochastic IPs, nearly matching upper and lower bounds are known concerning their computational complexity. One of the major gaps that remained however was the parameter dependency in the running time for an algorithm solving multistage stochastic IPs. Previous algorithms require a tower of t exponentials, where t is the number of stages. In contrast, only a double exponential lower bound was known based on the exponential time hypothesis. In this paper we show that the tower of t exponentials is actually not necessary. We show an improved running time of \(2^{(d\left\Vert A \right\Vert _\infty)^{\mathcal {O}(d^{3t+1})}} \cdot rn\log ^{\mathcal {O}(2^d)}(rn) \) for the algorithm solving multistage stochastic IPs, where d is the sum of columns in the connecting blocks and rn is the number of rows. Hence, we obtain the first bound by an elementary function for the running time of an algorithm solving multistage stochastic IPs. In contrast to previous works, our algorithm has only a triple exponential dependency on the parameters and only doubly exponential for every constant t. By this we come very close to the known double exponential bound that holds already for two-stage stochastic IPs, i.e. multistage stochastic IPs with two stages.
The improved running time of the algorithm is based on new bounds for the proximity of multistage stochastic IPs. The idea behind the bound is based on generalization of a structural lemma originally used for two-stage stochastic IPs. While the structural lemma requires iteration to be applied to multistage stochastic IPs, our generalization directly applies to inherent combinatorial properties of multiple stages. Already a special case of our lemma yields an improved bound for the Graver complexity of multistage stochastic IPs.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing