{"title":"Khintchine’s theorem and Diophantine approximation on manifolds","authors":"Victor Beresnevich, Lei Yang","doi":"10.4310/acta.2023.v231.n1.a1","DOIUrl":null,"url":null,"abstract":"In this paper we initiate a new approach to studying approximations by rational points to points on smooth submanifolds of $\\mathbb{R}^n$. Our main result is a convergence Khintchine type theorem for arbitrary non-degenerate submanifolds of $\\mathbb{R}^n$, which resolves a longstanding problem in the theory of Diophantine approximation. Furthermore, we refine this result using Hausdorff $s$-measures and consequently obtain the exact value of the Hausdorff dimension of $\\tau$-well approximable points lying on any non-degenerate submanifold for a range of Diophantine exponents $\\tau$ close to $1/n$. Our approach uses geometric and dynamical ideas together with a new technique of ‘generic and special parts’. In particular, we establish sharp upper bounds for the number of rational points of bounded height lying near the generic part of a non-degenerate manifold. In turn, we give an explicit exponentially small bound for the measure of the special part of the manifold. The latter uses a result of Bernik, Kleinbock and Margulis.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v231.n1.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we initiate a new approach to studying approximations by rational points to points on smooth submanifolds of $\mathbb{R}^n$. Our main result is a convergence Khintchine type theorem for arbitrary non-degenerate submanifolds of $\mathbb{R}^n$, which resolves a longstanding problem in the theory of Diophantine approximation. Furthermore, we refine this result using Hausdorff $s$-measures and consequently obtain the exact value of the Hausdorff dimension of $\tau$-well approximable points lying on any non-degenerate submanifold for a range of Diophantine exponents $\tau$ close to $1/n$. Our approach uses geometric and dynamical ideas together with a new technique of ‘generic and special parts’. In particular, we establish sharp upper bounds for the number of rational points of bounded height lying near the generic part of a non-degenerate manifold. In turn, we give an explicit exponentially small bound for the measure of the special part of the manifold. The latter uses a result of Bernik, Kleinbock and Margulis.