Khintchine’s theorem and Diophantine approximation on manifolds

IF 4.9 1区 数学 Q1 MATHEMATICS
Victor Beresnevich, Lei Yang
{"title":"Khintchine’s theorem and Diophantine approximation on manifolds","authors":"Victor Beresnevich, Lei Yang","doi":"10.4310/acta.2023.v231.n1.a1","DOIUrl":null,"url":null,"abstract":"In this paper we initiate a new approach to studying approximations by rational points to points on smooth submanifolds of $\\mathbb{R}^n$. Our main result is a convergence Khintchine type theorem for arbitrary non-degenerate submanifolds of $\\mathbb{R}^n$, which resolves a longstanding problem in the theory of Diophantine approximation. Furthermore, we refine this result using Hausdorff $s$-measures and consequently obtain the exact value of the Hausdorff dimension of $\\tau$-well approximable points lying on any non-degenerate submanifold for a range of Diophantine exponents $\\tau$ close to $1/n$. Our approach uses geometric and dynamical ideas together with a new technique of ‘generic and special parts’. In particular, we establish sharp upper bounds for the number of rational points of bounded height lying near the generic part of a non-degenerate manifold. In turn, we give an explicit exponentially small bound for the measure of the special part of the manifold. The latter uses a result of Bernik, Kleinbock and Margulis.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v231.n1.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we initiate a new approach to studying approximations by rational points to points on smooth submanifolds of $\mathbb{R}^n$. Our main result is a convergence Khintchine type theorem for arbitrary non-degenerate submanifolds of $\mathbb{R}^n$, which resolves a longstanding problem in the theory of Diophantine approximation. Furthermore, we refine this result using Hausdorff $s$-measures and consequently obtain the exact value of the Hausdorff dimension of $\tau$-well approximable points lying on any non-degenerate submanifold for a range of Diophantine exponents $\tau$ close to $1/n$. Our approach uses geometric and dynamical ideas together with a new technique of ‘generic and special parts’. In particular, we establish sharp upper bounds for the number of rational points of bounded height lying near the generic part of a non-degenerate manifold. In turn, we give an explicit exponentially small bound for the measure of the special part of the manifold. The latter uses a result of Bernik, Kleinbock and Margulis.
流形上的Khintchine定理和丢番图近似
本文提出了一种研究光滑子流形$\mathbb{R}^n$上有理点对点逼近的新方法。我们的主要成果是$\mathbb{R}^n$的任意非退化子流形的收敛Khintchine型定理,它解决了丢芬图近似理论中一个长期存在的问题。此外,我们使用Hausdorff $s$-测度来改进这一结果,从而得到在任何非简并子流形上的$\tau$-在Diophantine指数$\tau$接近$1/n$的范围内的$\tau$-可近似点的Hausdorff维数的精确值。我们的方法将几何和动力学的思想与“通用和特殊零件”的新技术结合在一起。特别地,我们建立了在非退化流形的一般部分附近有界高度的有理点数目的明显上界。然后,我们给出了流形特殊部分测度的显式指数小界。后者使用了Bernik, Kleinbock和Margulis的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信