On topological cyclic homology

IF 4.9 1区 数学 Q1 MATHEMATICS
Thomas Nikolaus, Peter Scholze
{"title":"On topological cyclic homology","authors":"Thomas Nikolaus, Peter Scholze","doi":"10.4310/acta.2018.v221.n2.a1","DOIUrl":null,"url":null,"abstract":"Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by Bokstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\\varphi_p: X\\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\\mathrm{cofib}(\\mathrm{Nm}: X_{hC_p}\\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\\varphi_p: X\\to X^{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2018.v221.n2.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by Bokstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\varphi_p: X\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\varphi_p: X\to X^{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.
论拓扑循环同调
拓扑循环同调是1993年Bokstedt- Hsiang- Madsen作为代数$K$ -理论的近似引入的Connes- Tsygan循环同调的改进。有一个从代数$K$ -理论到拓扑循环同调的迹映射,并且Dundas- Goodwillie- McCarthy的一个定理断言,这导致了幂零浸入的相关理论的等价,这为在各种情况下计算$K$ -理论提供了一种方法。拓扑循环同伦的构造是基于真正的等变同伦理论、显式点集模型的使用和环切谱的精细概念。本文的目的是用同伦不变的概念来重新审视这个理论。特别地,我们给出了拓扑循环同调的一个新构造。这是基于对分环谱$\infty$ -范畴的一个新定义:我们将分环谱定义为对所有质数$p$具有$S^1$ -作用(在最朴素的意义上)和$S^1$ -等变映射$\varphi_p: X\to X^{tC_p}$的谱$X$。这里$X^{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X^{hC_p})$是泰特美术馆的建筑。在有界谱上,我们证明了这与以前的定义一致。由此,我们得到了拓扑循环同调的一个新的、简单的公式。为了构造拓扑Hochschild同态例子中的映射$\varphi_p: X\to X^{tC_p}$,我们引入并研究了对易环谱的Tate对角线和Frobenius同态。特别地,我们证明了关于Tate对角线的Segal猜想的一个版本,并将这些Frobenius同态与幂运算联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信