Assessing Nonlinear Diffusion Acceleration for Boltzmann Fokker Planck Equation in Slab Geometry

Japan K. Patel, Barry D. Ganapol, Martha M. Matuszak
{"title":"Assessing Nonlinear Diffusion Acceleration for Boltzmann Fokker Planck Equation in Slab Geometry","authors":"Japan K. Patel, Barry D. Ganapol, Martha M. Matuszak","doi":"arxiv-2312.02930","DOIUrl":null,"url":null,"abstract":"The convergence of Boltzmann Fokker Planck solution can become arbitrarily\nslow with iterative procedures like source iteration. This paper derives and\ninvestigates a nonlinear diffusion acceleration scheme for the solution of the\nBoltzmann Fokker Planck equation in slab geometry. This method is a\nconventional high order low order scheme with a traditional\ndiffusion-plus-drift low-order system. The method, however, differs from the\nearlier variants as the definition of the low order equation, which is adjusted\naccording to the zeroth and first moments of the Boltzmann Fokker Planck\nequation. For the problems considered, we observe that the NDA-accelerated\nsolution follows the unaccelerated well and provides roughly an order of\nmagnitude savings in iteration count and runtime compared to source iteration.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence of Boltzmann Fokker Planck solution can become arbitrarily slow with iterative procedures like source iteration. This paper derives and investigates a nonlinear diffusion acceleration scheme for the solution of the Boltzmann Fokker Planck equation in slab geometry. This method is a conventional high order low order scheme with a traditional diffusion-plus-drift low-order system. The method, however, differs from the earlier variants as the definition of the low order equation, which is adjusted according to the zeroth and first moments of the Boltzmann Fokker Planck equation. For the problems considered, we observe that the NDA-accelerated solution follows the unaccelerated well and provides roughly an order of magnitude savings in iteration count and runtime compared to source iteration.
平板几何中Boltzmann - Fokker - Planck方程的非线性扩散加速度评估
通过源迭代等迭代过程,Boltzmann - Fokker - Planck解的收敛速度可以任意变慢。本文导出并研究了平板几何中玻尔兹曼-福克-普朗克方程解的非线性扩散加速格式。该方法是传统的高阶低阶方案,具有传统的扩散加漂移低阶系统。然而,该方法不同于早期的变体,因为它是根据玻尔兹曼-福克-普朗克方程的零阶和一阶矩来调整的低阶方程的定义。对于所考虑的问题,我们观察到nda加速解决方案很好地遵循非加速解决方案,并且与源迭代相比,在迭代计数和运行时间方面提供了大约一个数量级的节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信