Energy-consistent integration of mechanical systems based on Livens principle

Philipp L. Kinon, Peter Betsch
{"title":"Energy-consistent integration of mechanical systems based on Livens principle","authors":"Philipp L. Kinon, Peter Betsch","doi":"arxiv-2312.02825","DOIUrl":null,"url":null,"abstract":"In this work we make us of Livens principle (sometimes also referred to as\nHamilton-Pontryagin principle) in order to obtain a novel structure-preserving\nintegrator for mechanical systems. In contrast to the canonical Hamiltonian\nequations of motion, the Euler-Lagrange equations pertaining to Livens\nprinciple circumvent the need to invert the mass matrix. This is an essential\nadvantage with respect to singular mass matrices, which can yield severe\ndifficulties for the modelling and simulation of multibody systems. Moreover,\nLivens principle unifies both Lagrangian and Hamiltonian viewpoints on\nmechanics. Additionally, the present framework avoids the need to set up the\nsystem's Hamiltonian. The novel scheme algorithmically conserves a general\nenergy function and aims at the preservation of momentum maps corresponding to\nsymmetries of the system. We present an extension to mechanical systems subject\nto holonomic constraints. The performance of the newly devised method is\nstudied in representative examples.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we make us of Livens principle (sometimes also referred to as Hamilton-Pontryagin principle) in order to obtain a novel structure-preserving integrator for mechanical systems. In contrast to the canonical Hamiltonian equations of motion, the Euler-Lagrange equations pertaining to Livens principle circumvent the need to invert the mass matrix. This is an essential advantage with respect to singular mass matrices, which can yield severe difficulties for the modelling and simulation of multibody systems. Moreover, Livens principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics. Additionally, the present framework avoids the need to set up the system's Hamiltonian. The novel scheme algorithmically conserves a general energy function and aims at the preservation of momentum maps corresponding to symmetries of the system. We present an extension to mechanical systems subject to holonomic constraints. The performance of the newly devised method is studied in representative examples.
基于Livens原理的机械系统能量一致性集成
在这项工作中,我们利用Livens原理(有时也被称为hamilton - pontryagin原理)来获得一种新的机械系统结构保持积分器。与经典的哈密顿运动方程相反,与利文原理有关的欧拉-拉格朗日方程避免了对质量矩阵进行反求的需要。这是相对于奇异质量矩阵的一个基本优势,它会给多体系统的建模和仿真带来严重的困难。此外,利文斯原理统一了拉格朗日和哈密顿的力学观点。此外,本框架避免了建立系统哈密顿量的需要。新方案在算法上守恒一个广义的能量函数,旨在保持系统对称性对应的动量映射。我们提出了受完整约束的机械系统的一个推广。通过典型算例对新方法的性能进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信