A New Upper Bound For the Growth Factor in Gaussian Elimination with Complete Pivoting

Ankit Bisain, Alan Edelman, John Urschel
{"title":"A New Upper Bound For the Growth Factor in Gaussian Elimination with Complete Pivoting","authors":"Ankit Bisain, Alan Edelman, John Urschel","doi":"arxiv-2312.00994","DOIUrl":null,"url":null,"abstract":"The growth factor in Gaussian elimination measures how large the entries of\nan LU factorization can be relative to the entries of the original matrix. It\nis a key parameter in error estimates, and one of the most fundamental topics\nin numerical analysis. We produce an upper bound of $n^{0.2079 \\ln n +0.91}$\nfor the growth factor in Gaussian elimination with complete pivoting -- the\nfirst improvement upon Wilkinson's original 1961 bound of $2 \\, n ^{0.25\\ln n\n+0.5}$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of $n^{0.2079 \ln n +0.91}$ for the growth factor in Gaussian elimination with complete pivoting -- the first improvement upon Wilkinson's original 1961 bound of $2 \, n ^{0.25\ln n +0.5}$.
完全旋转高斯消去中生长因子的一个新的上界
高斯消去法中的生长因子衡量的是,相对于原始矩阵的元素,LU分解的元素有多大。它是误差估计中的一个关键参数,也是数值分析中最基本的课题之一。我们为高斯消去中具有完全轴向的生长因子产生了$n^{0.2079 \ln n+ 0.91}$的上界——这是对Wilkinson在1961年提出的$2 \,n^{0.25\ln n+0.5}$上界的第一次改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信