Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification for Fast Physical Simulations

Christophe Bonneville, Youngsoo Choi, Debojyoti Ghosh, Jonathan L. Belof
{"title":"Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification for Fast Physical Simulations","authors":"Christophe Bonneville, Youngsoo Choi, Debojyoti Ghosh, Jonathan L. Belof","doi":"arxiv-2312.01021","DOIUrl":null,"url":null,"abstract":"Traditional partial differential equation (PDE) solvers can be\ncomputationally expensive, which motivates the development of faster methods,\nsuch as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning\nand Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data\nand simultaneously learns simpler equations governing the latent space. These\nequations are interpolated with Gaussian Processes, allowing for uncertainty\nquantification and active learning, even with limited access to the FOM solver.\nOur framework is able to achieve up to 100,000 times speed-up and less than 7%\nrelative error on fluid mechanics problems.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional partial differential equation (PDE) solvers can be computationally expensive, which motivates the development of faster methods, such as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning and Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data and simultaneously learns simpler equations governing the latent space. These equations are interpolated with Gaussian Processes, allowing for uncertainty quantification and active learning, even with limited access to the FOM solver. Our framework is able to achieve up to 100,000 times speed-up and less than 7% relative error on fluid mechanics problems.
数据驱动自编码器数值解算器与不确定性量化快速物理模拟
传统的偏微分方程(PDE)求解方法在计算上非常昂贵,这促使了快速求解方法的发展,如降阶模型(ROMs)。我们提出了GPLaSDI,一种混合深度学习和贝叶斯ROM。GPLaSDI在全阶模型(FOM)数据上训练一个自编码器,同时学习控制潜在空间的更简单的方程。这些方程是用高斯过程插值的,允许不确定性量化和主动学习,即使对FOM求解器的访问有限。我们的框架能够在流体力学问题上实现高达10万倍的加速和小于7%的相对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信