Joint continuity in semitopological monoids and semilattices

Pub Date : 2023-12-04 DOI:10.1007/s00233-023-10400-y
Alexander V. Osipov, Konstantin Kazachenko
{"title":"Joint continuity in semitopological monoids and semilattices","authors":"Alexander V. Osipov, Konstantin Kazachenko","doi":"10.1007/s00233-023-10400-y","DOIUrl":null,"url":null,"abstract":"<p>We study the separately continuous actions of semitopological monoids on pseudocompact spaces. The main aim of this paper is to generalize Lawson’s results to some class of pseudocompact spaces. Also, we introduce the concept of a weak <span>\\(q_D\\)</span>-space and prove that a pseudocompact space and a weak <span>\\(q_D\\)</span>-space form a Grothendieck pair. As an application of the main result, we investigate the continuity of multiplication and taking inverses in subgroups of semitopological semigroups. In particular, we get that if <span>\\((S, \\bullet )\\)</span> is a Tychonoff pseudocompact semitopological monoid with a quasicontinuous multiplication <span>\\(\\bullet \\)</span> and <i>G</i> is a subgroup of <i>S</i>, then <i>G</i> is a topological group. Also, we study the continuity of operations in semitopological semilattices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-023-10400-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the separately continuous actions of semitopological monoids on pseudocompact spaces. The main aim of this paper is to generalize Lawson’s results to some class of pseudocompact spaces. Also, we introduce the concept of a weak \(q_D\)-space and prove that a pseudocompact space and a weak \(q_D\)-space form a Grothendieck pair. As an application of the main result, we investigate the continuity of multiplication and taking inverses in subgroups of semitopological semigroups. In particular, we get that if \((S, \bullet )\) is a Tychonoff pseudocompact semitopological monoid with a quasicontinuous multiplication \(\bullet \) and G is a subgroup of S, then G is a topological group. Also, we study the continuity of operations in semitopological semilattices.

分享
查看原文
半拓扑一元和半格的联合连续性
研究了半拓扑独群在伪紧空间上的独立连续作用。本文的主要目的是将Lawson的结果推广到一类伪紧空间。同时,引入弱\(q_D\) -空间的概念,证明了赝紧空间和弱\(q_D\) -空间构成Grothendieck对。作为主要结果的应用,我们研究了半拓扑半群子群中乘法和取逆的连续性。特别地,我们得到了如果\((S, \bullet )\)是一个拟连续乘法\(\bullet \)的Tychonoff伪紧半拓扑单群,并且G是S的一个子群,则G是一个拓扑群。此外,我们还研究了半拓扑半格中运算的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信