Influence of elevated temperatures on mode I and mode II fracture toughness and fracture energy of nanoclay reinforced polymer concrete

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Ali Abdi Aghdam, Mostafa Hassani Niaki
{"title":"Influence of elevated temperatures on mode I and mode II fracture toughness and fracture energy of nanoclay reinforced polymer concrete","authors":"Ali Abdi Aghdam, Mostafa Hassani Niaki","doi":"10.1680/jmacr.23.00163","DOIUrl":null,"url":null,"abstract":"Depending on the type of application, polymer concrete (PC) may be exposed to high temperatures. Therefore, it is important to investigate the influence of exposure to elevated temperatures on the fracture mechanics of PC. For this purpose, the PC composed of epoxy as resin, silica sand and crushed basalt as aggregates, and nanoclay as nanofiller is synthesized. The prepared PC is exposed to temperatures of 24, 40, 60, 80, 100, 120, and 140°C for two hours, and the residual fracture toughness and fracture energy in mode I and mode II are studied. Three-point bending test is conducted on cracked semi-circular bend specimens with the crack angle of 0° (pure mode I) and 41° (pure mode II) to determine the fracture parameters. Subjecting to high temperatures significantly increased the fracture toughness and fracture energy of the PC. The maximum fracture toughness and fracture energy are obtained after exposure to 120°C and 140°C, respectively. Scanning electron microscope (SEM) micrographs are used to investigate the fracture surface of the PC. The results of the present experimental research are useful in understanding the fracture mechanics behavior of PCs in mode I and mode II after being subjected to high temperatures.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00163","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Depending on the type of application, polymer concrete (PC) may be exposed to high temperatures. Therefore, it is important to investigate the influence of exposure to elevated temperatures on the fracture mechanics of PC. For this purpose, the PC composed of epoxy as resin, silica sand and crushed basalt as aggregates, and nanoclay as nanofiller is synthesized. The prepared PC is exposed to temperatures of 24, 40, 60, 80, 100, 120, and 140°C for two hours, and the residual fracture toughness and fracture energy in mode I and mode II are studied. Three-point bending test is conducted on cracked semi-circular bend specimens with the crack angle of 0° (pure mode I) and 41° (pure mode II) to determine the fracture parameters. Subjecting to high temperatures significantly increased the fracture toughness and fracture energy of the PC. The maximum fracture toughness and fracture energy are obtained after exposure to 120°C and 140°C, respectively. Scanning electron microscope (SEM) micrographs are used to investigate the fracture surface of the PC. The results of the present experimental research are useful in understanding the fracture mechanics behavior of PCs in mode I and mode II after being subjected to high temperatures.
高温对纳米粘土增强聚合物混凝土I、II型断裂韧性和断裂能的影响
根据不同的应用类型,聚合物混凝土(PC)可能会暴露在高温下。因此,研究高温对PC断裂力学的影响具有重要意义。为此,合成了以环氧树脂为树脂,硅砂和破碎的玄武岩为集料,纳米粘土为纳米填料的PC。将制备好的PC在24、40、60、80、100、120、140℃的温度下保温2小时,研究了PC在I、II模式下的残余断裂韧性和断裂能。对裂纹角为0°(纯ⅰ型)和41°(纯ⅱ型)的开裂半圆弯曲试件进行三点弯曲试验,确定断裂参数。高温处理显著提高了PC的断裂韧性和断裂能。断裂韧性和断裂能分别在120°C和140°C时达到最大。采用扫描电子显微镜(SEM)对PC断口进行了显微观察。本文的实验研究结果有助于理解pc在高温作用下的I型和II型断裂力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信