Strontium isotope compositions of Late Permian evaporites from the northernmost Thuringian Basin (Germany) indicate continental influence on the marine Zechstein Sea
{"title":"Strontium isotope compositions of Late Permian evaporites from the northernmost Thuringian Basin (Germany) indicate continental influence on the marine Zechstein Sea","authors":"A. Käßner, M. Tichomirowa, R. Tandler, J. Ziebell","doi":"10.1007/s00531-023-02365-8","DOIUrl":null,"url":null,"abstract":"<p>In the Late Permian Zechstein Sea of Central Europe, up to 2000 m of evaporitic rocks were deposited in at least four consecutive cycles. The age of these evaporitic rocks could not yet be precisely determined, because they are virtually fossil-free and do not contain radiometrically datable volcanic layers. A chemostratigraphic age of the succession can be determined by comparing <sup>87</sup>Sr/<sup>86</sup>Sr ratios of marine gypsum and anhydrite to the worldwide marine strontium evolution curve. Unfortunately, published <sup>87</sup>Sr/<sup>86</sup>Sr data of the Zechstein succession are characterized by frequent outliers towards higher ratios, making an age assignment challenging. The scatter in <sup>87</sup>Sr/<sup>86</sup>Sr ratios might be induced by different processes like the contribution of meteoric water to the brine, in-situ Rb decay, or post-depositional hydrothermal or diagenetic overprint. Here, we present a dataset of 26 new gypsum and anhydrite <sup>87</sup>Sr/<sup>86</sup>Sr ratios from drill cores situated at “Alter Stolberg” in the northernmost Thuringian Basin. Evaporites of the Werra-, Staßfurt-, and Leine cycles were sampled. The close proximity of the drillings allows a very accurate assignment of the stratigraphic position of each sample, so that trends and outliers in <sup>87</sup>Sr/<sup>86</sup>Sr ratios can easily be recognized. While the entire Werra Formation obviously revealed non-marine <sup>87</sup>Sr/<sup>86</sup>Sr ratios, the lowermost <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the Staßfurt and Leine Formations can be assumed to represent marine ratios and allow estimating a chemostratigraphic age of 257‒254 Ma. The combination of the <sup>87</sup>Sr/<sup>86</sup>Sr data with the mineral composition of the samples suggests a contribution of meteoric water, probably river water, to the Zechstein Sea as the main reason for the observed increase in <sup>87</sup>Sr/<sup>86</sup>Sr ratios. Additional in-situ Rb decay, related to the riverine input of clay minerals, cannot be excluded. Modelling the amounts of sea water and meteoric water in the brine indicates that 83‒99% of meteoric water would be necessary to explain the highest <sup>87</sup>Sr/<sup>86</sup>Sr ratios observed in the Werra Formation.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":13845,"journal":{"name":"International Journal of Earth Sciences","volume":" 46","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00531-023-02365-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the Late Permian Zechstein Sea of Central Europe, up to 2000 m of evaporitic rocks were deposited in at least four consecutive cycles. The age of these evaporitic rocks could not yet be precisely determined, because they are virtually fossil-free and do not contain radiometrically datable volcanic layers. A chemostratigraphic age of the succession can be determined by comparing 87Sr/86Sr ratios of marine gypsum and anhydrite to the worldwide marine strontium evolution curve. Unfortunately, published 87Sr/86Sr data of the Zechstein succession are characterized by frequent outliers towards higher ratios, making an age assignment challenging. The scatter in 87Sr/86Sr ratios might be induced by different processes like the contribution of meteoric water to the brine, in-situ Rb decay, or post-depositional hydrothermal or diagenetic overprint. Here, we present a dataset of 26 new gypsum and anhydrite 87Sr/86Sr ratios from drill cores situated at “Alter Stolberg” in the northernmost Thuringian Basin. Evaporites of the Werra-, Staßfurt-, and Leine cycles were sampled. The close proximity of the drillings allows a very accurate assignment of the stratigraphic position of each sample, so that trends and outliers in 87Sr/86Sr ratios can easily be recognized. While the entire Werra Formation obviously revealed non-marine 87Sr/86Sr ratios, the lowermost 87Sr/86Sr ratios in the Staßfurt and Leine Formations can be assumed to represent marine ratios and allow estimating a chemostratigraphic age of 257‒254 Ma. The combination of the 87Sr/86Sr data with the mineral composition of the samples suggests a contribution of meteoric water, probably river water, to the Zechstein Sea as the main reason for the observed increase in 87Sr/86Sr ratios. Additional in-situ Rb decay, related to the riverine input of clay minerals, cannot be excluded. Modelling the amounts of sea water and meteoric water in the brine indicates that 83‒99% of meteoric water would be necessary to explain the highest 87Sr/86Sr ratios observed in the Werra Formation.
期刊介绍:
The International Journal of Earth Sciences publishes process-oriented original and review papers on the history of the earth, including
- Dynamics of the lithosphere
- Tectonics and volcanology
- Sedimentology
- Evolution of life
- Marine and continental ecosystems
- Global dynamics of physicochemical cycles
- Mineral deposits and hydrocarbons
- Surface processes.