{"title":"Extracting connectivity paths in digital core images using solution of partial minimum eigenvalue problem","authors":"Serguei Yu. Maliassov, Yuri V. Vassilevski","doi":"10.1515/rnam-2023-0028","DOIUrl":null,"url":null,"abstract":"We show theoretically and numerically that the lowest non-trivial eigenvector function for a specific eigenproblem has almost constant values in high conductivity channels, which are different in separate channels. Therefore, based on these distinct values, all separate connected clusters of open pores can be identified in digital cores.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":" 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We show theoretically and numerically that the lowest non-trivial eigenvector function for a specific eigenproblem has almost constant values in high conductivity channels, which are different in separate channels. Therefore, based on these distinct values, all separate connected clusters of open pores can be identified in digital cores.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.