Non-local discretization of the isoneutral diffusion operator in a terrain-following climate ocean model

Pub Date : 2023-12-05 DOI:10.1515/rnam-2023-0026
Dmitry V. Blagodatskikh, Nikolay G. Iakovlev, Evgenii M. Volodin, Andrey S. Gritsun
{"title":"Non-local discretization of the isoneutral diffusion operator in a terrain-following climate ocean model","authors":"Dmitry V. Blagodatskikh, Nikolay G. Iakovlev, Evgenii M. Volodin, Andrey S. Gritsun","doi":"10.1515/rnam-2023-0026","DOIUrl":null,"url":null,"abstract":"The present paper considers numerical properties of two different approaches to discretization of the isoneutral diffusion. The necessity of an alternative treatment of the isoneutral diffusion in a terrain-following climate ocean model as opposed to the more convenient rotated tensor formalism is studied. A new method of the approximation of the isoneutral diffusion based on a non-local computational stencil is formulated. The validity of the non-local discretization of the isoneutral diffusion operator with regard to a terrain-following vertical coordinate in the INMCM ocean model is demonstrated.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper considers numerical properties of two different approaches to discretization of the isoneutral diffusion. The necessity of an alternative treatment of the isoneutral diffusion in a terrain-following climate ocean model as opposed to the more convenient rotated tensor formalism is studied. A new method of the approximation of the isoneutral diffusion based on a non-local computational stencil is formulated. The validity of the non-local discretization of the isoneutral diffusion operator with regard to a terrain-following vertical coordinate in the INMCM ocean model is demonstrated.
分享
查看原文
地形跟随气候海洋模式中等中性扩散算子的非局部离散化
本文研究了等中性扩散离散化的两种不同方法的数值性质。本文研究了在地形跟随气候海洋模式中对等中性扩散进行替代处理的必要性,而不是更方便的旋转张量形式。提出了一种新的基于非局部计算模板的等中性扩散近似方法。在INMCM海洋模型中,等中性扩散算子对于地形跟随垂直坐标的非局部离散化是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信