{"title":"Uniformly constrained reinforcement learning","authors":"Jaeyoung Lee, Sean Sedwards, Krzysztof Czarnecki","doi":"10.1007/s10458-023-09607-8","DOIUrl":null,"url":null,"abstract":"<div><p>We propose new multi-objective reinforcement learning algorithms that aim to find a globally Pareto-optimal deterministic policy that uniformly (in all states) maximizes a reward subject to a uniform probabilistic constraint over reaching forbidden states of a Markov decision process. Our requirements arise naturally in the context of safety-critical systems, but pose a significant unmet challenge. This class of learning problem is known to be hard and there are no off-the-shelf solutions that fully address the combined requirements of determinism and uniform optimality. Having formalized our requirements and highlighted the specific challenge of learning instability, using a simple counterexample, we define from first principles a stable Bellman operator that we prove partially respects our requirements. This operator is therefore a partial solution to our problem, but produces conservative polices in comparison to our previous approach, which was not designed to satisfy the same requirements. We thus propose a relaxation of the stable operator, using <i>adaptive hysteresis</i>, that forms the basis of a heuristic approach that is stable w.r.t. our counterexample and learns policies that are less conservative than those of the stable operator and our previous algorithm. In comparison to our previous approach, the policies of our adaptive hysteresis algorithm demonstrate improved monotonicity with increasing constraint probabilities, which is one of the characteristics we desire. We demonstrate that adaptive hysteresis works well with dynamic programming and reinforcement learning, and can be adapted to function approximation.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09607-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose new multi-objective reinforcement learning algorithms that aim to find a globally Pareto-optimal deterministic policy that uniformly (in all states) maximizes a reward subject to a uniform probabilistic constraint over reaching forbidden states of a Markov decision process. Our requirements arise naturally in the context of safety-critical systems, but pose a significant unmet challenge. This class of learning problem is known to be hard and there are no off-the-shelf solutions that fully address the combined requirements of determinism and uniform optimality. Having formalized our requirements and highlighted the specific challenge of learning instability, using a simple counterexample, we define from first principles a stable Bellman operator that we prove partially respects our requirements. This operator is therefore a partial solution to our problem, but produces conservative polices in comparison to our previous approach, which was not designed to satisfy the same requirements. We thus propose a relaxation of the stable operator, using adaptive hysteresis, that forms the basis of a heuristic approach that is stable w.r.t. our counterexample and learns policies that are less conservative than those of the stable operator and our previous algorithm. In comparison to our previous approach, the policies of our adaptive hysteresis algorithm demonstrate improved monotonicity with increasing constraint probabilities, which is one of the characteristics we desire. We demonstrate that adaptive hysteresis works well with dynamic programming and reinforcement learning, and can be adapted to function approximation.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.