Hilbert-Schmidt Numerical Radius of a Pair of Operators

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Soumia Aici, Abdelkader Frakis, Fuad Kittaneh
{"title":"Hilbert-Schmidt Numerical Radius of a Pair of Operators","authors":"Soumia Aici,&nbsp;Abdelkader Frakis,&nbsp;Fuad Kittaneh","doi":"10.1007/s10440-023-00624-z","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new norm on <span>\\(\\mathcal{C}_{2}\\times \\mathcal{C}_{2}\\)</span>, where <span>\\(\\mathcal{C}_{2}\\)</span> is the Hilbert-Schmidt class. We study basic properties of this norm and prove inequalities involving it. As an application of the present study, we deduce a chain of new bounds for the Hilbert-Schmidt numerical radii of <span>\\(2\\times 2\\)</span> operator matrices. Connection with the classical Hilbert-Schmidt numerical radius of a single operator are also provided. Moreover, we refine some related existing bounds, too.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00624-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new norm on \(\mathcal{C}_{2}\times \mathcal{C}_{2}\), where \(\mathcal{C}_{2}\) is the Hilbert-Schmidt class. We study basic properties of this norm and prove inequalities involving it. As an application of the present study, we deduce a chain of new bounds for the Hilbert-Schmidt numerical radii of \(2\times 2\) operator matrices. Connection with the classical Hilbert-Schmidt numerical radius of a single operator are also provided. Moreover, we refine some related existing bounds, too.

算子对的Hilbert-Schmidt数值半径
我们在 \(\mathcal{C}_{2}\times \mathcal{C}_{2}\) 上引入了一种新的规范,其中 \(\mathcal{C}_{2}\) 是希尔伯特-施密特类。我们研究了这一规范的基本性质,并证明了涉及它的不等式。作为本研究的一个应用,我们为 \(2\times 2\) 算子矩阵的希尔伯特-施密特数值半径推导出了一连串新的边界。我们还提供了与经典的单算子希尔伯特-施密特数值半径的联系。此外,我们还完善了一些相关的现有边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信