{"title":"Breast cancer detection based on simplified deep learning technique with histopathological image using BreaKHis database","authors":"Tania Afroz Toma;Shivazi Biswas;Md Sipon Miah;Mohammad Alibakhshikenari;Bal S. Virdee;Sandra Fernando;Md Habibur Rahman;Syed Mansoor Ali;Farhad Arpanaei;Mohammad Amzad Hossain;Md Mahbubur Rahman;Ming-bo Niu;Naser Ojaroudi Parchin;Patrizia Livreri","doi":"10.1029/2023RS007761","DOIUrl":null,"url":null,"abstract":"Presented here are the results of an investigation conducted to determine the effectiveness of deep learning (DL)-based systems utilizing the power of transfer learning for detecting breast cancer in histopathological images. It is shown that DL models that are not specifically developed for breast cancer detection can be trained using transfer learning to effectively detect breast cancer in histopathological images. The outcome of the analysis enables the selection of the best DL architecture for detecting cancer with high accuracy. This should facilitate pathologists to achieve early diagnoses of breast cancer and administer appropriate treatment to the patient. The experimental work here used the BreaKHis database consisting of 7909 histopathological pictures from 82 clinical breast cancer patients. The strategy presented for DL training uses various image processing techniques for extracting various feature patterns. This is followed by applying transfer learning techniques in the deep convolutional networks like ResNet, ResNeXt, SENet, Dual Path Net, DenseNet, NASNet, and Wide ResNet. Comparison with recent literature shows that ResNext-50, ResNext-101, DPN131, DenseNet-169 and NASNet-A provide an accuracy of 99.8%, 99.5%, 99.675%, 99.725%, and 99.4%, respectively, and outperform previous studies.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"58 11","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10344325/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Presented here are the results of an investigation conducted to determine the effectiveness of deep learning (DL)-based systems utilizing the power of transfer learning for detecting breast cancer in histopathological images. It is shown that DL models that are not specifically developed for breast cancer detection can be trained using transfer learning to effectively detect breast cancer in histopathological images. The outcome of the analysis enables the selection of the best DL architecture for detecting cancer with high accuracy. This should facilitate pathologists to achieve early diagnoses of breast cancer and administer appropriate treatment to the patient. The experimental work here used the BreaKHis database consisting of 7909 histopathological pictures from 82 clinical breast cancer patients. The strategy presented for DL training uses various image processing techniques for extracting various feature patterns. This is followed by applying transfer learning techniques in the deep convolutional networks like ResNet, ResNeXt, SENet, Dual Path Net, DenseNet, NASNet, and Wide ResNet. Comparison with recent literature shows that ResNext-50, ResNext-101, DPN131, DenseNet-169 and NASNet-A provide an accuracy of 99.8%, 99.5%, 99.675%, 99.725%, and 99.4%, respectively, and outperform previous studies.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.