Language augmentation approach for code-mixed text classification

Gauri Takawane , Abhishek Phaltankar , Varad Patwardhan , Aryan Patil , Raviraj Joshi , Mukta S. Takalikar
{"title":"Language augmentation approach for code-mixed text classification","authors":"Gauri Takawane ,&nbsp;Abhishek Phaltankar ,&nbsp;Varad Patwardhan ,&nbsp;Aryan Patil ,&nbsp;Raviraj Joshi ,&nbsp;Mukta S. Takalikar","doi":"10.1016/j.nlp.2023.100042","DOIUrl":null,"url":null,"abstract":"<div><p>The usage of more than one language in the same text is referred to as Code Mixed. It is evident that there is a growing degree of adaption of the use of code-mixed data, especially English with a regional language, on social media platforms. Existing deep-learning models do not take advantage of the implicit language information in the code-mixed text. Our study aims to improve BERT-based models’ performance on low-resource Code-Mixed Hindi–English Datasets by experimenting with language augmentation approaches. For language augmentation in BERT models, we explore word-level interleaving and post-sentence placement of language information. We have examined the performance of vanilla BERT-based models and their code-mixed HingBERT counterparts on respective benchmark datasets, comparing their results with and without using word-level language information. The models were evaluated using metrics such as accuracy, precision, recall, and F1 score. Our findings show that the proposed language augmentation approaches work well across different BERT models. We demonstrate the importance of augmenting code-mixed text with language information on five different code-mixed Hindi–English classification datasets based on sentiment analysis, hate speech detection, and emotion detection.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"5 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719123000390/pdfft?md5=4c28d57ccc5c7c3a313a5f6153242cf7&pid=1-s2.0-S2949719123000390-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of more than one language in the same text is referred to as Code Mixed. It is evident that there is a growing degree of adaption of the use of code-mixed data, especially English with a regional language, on social media platforms. Existing deep-learning models do not take advantage of the implicit language information in the code-mixed text. Our study aims to improve BERT-based models’ performance on low-resource Code-Mixed Hindi–English Datasets by experimenting with language augmentation approaches. For language augmentation in BERT models, we explore word-level interleaving and post-sentence placement of language information. We have examined the performance of vanilla BERT-based models and their code-mixed HingBERT counterparts on respective benchmark datasets, comparing their results with and without using word-level language information. The models were evaluated using metrics such as accuracy, precision, recall, and F1 score. Our findings show that the proposed language augmentation approaches work well across different BERT models. We demonstrate the importance of augmenting code-mixed text with language information on five different code-mixed Hindi–English classification datasets based on sentiment analysis, hate speech detection, and emotion detection.

代码混合文本分类的语言增强方法
在同一文本中使用一种以上的语言被称为代码混合。很明显,在社交媒体平台上使用代码混合数据,特别是英语与地方语言混合数据的适应程度越来越高。现有的深度学习模型无法利用代码混合文本中的隐含语言信息。我们的研究旨在通过实验语言增强方法,提高基于 BERT 的模型在低资源混合印地语-英语数据集上的性能。对于 BERT 模型中的语言增强,我们探索了词级交错和句后语言信息放置。我们在各自的基准数据集上检验了基于 BERT 的虚构模型及其代码混合的 HingBERT 对应模型的性能,比较了使用和不使用词级语言信息的结果。我们使用准确率、精确度、召回率和 F1 分数等指标对这些模型进行了评估。我们的研究结果表明,所提出的语言增强方法在不同的 BERT 模型中效果良好。我们在基于情感分析、仇恨言论检测和情感检测的五个不同的印地语-英语混合编码分类数据集上证明了用语言信息增强混合编码文本的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信