Fully automated evaluation of paraspinal muscle morphology and composition in patients with low back pain

Paolo Giaccone , Federico D'Antoni , Fabrizio Russo , Manuel Volpecina , Carlo Augusto Mallio , Giuseppe Francesco Papalia , Gianluca Vadalà , Vincenzo Denaro , Luca Vollero , Mario Merone
{"title":"Fully automated evaluation of paraspinal muscle morphology and composition in patients with low back pain","authors":"Paolo Giaccone ,&nbsp;Federico D'Antoni ,&nbsp;Fabrizio Russo ,&nbsp;Manuel Volpecina ,&nbsp;Carlo Augusto Mallio ,&nbsp;Giuseppe Francesco Papalia ,&nbsp;Gianluca Vadalà ,&nbsp;Vincenzo Denaro ,&nbsp;Luca Vollero ,&nbsp;Mario Merone","doi":"10.1016/j.ibmed.2023.100130","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic Low Back Pain (LBP) is one of the most prevalent musculoskeletal conditions and is the leading cause of disability worldwide. The morphology and composition of lumbar paraspinal muscles, in terms of infiltrated adipose tissue, constitute important guidelines for diagnosis and treatment choice but still require manual procedures to be assessed. We developed a fully automated artificial intelligence based algorithm both to segment paraspinal muscles from MRI scans through a U-Net architecture and to estimate the amount of fatty infiltrations by a home-made intensity- and region-based processing; we further validated our results by statistical assessment of the accuracy and agreement between our automated measures and the clinically reported values, achieving dice scores greater than 95 % on the preliminary segmentation task, as well as an excellent degree of agreement on the following area estimates (ICC<sub>2,1</sub> = 0.89). Furthermore, we employed an external public dataset to validate our model generalization abilities, reaching dice scores greater than 94 % with an average processing time of 21.92<em>s</em>(±3.38<em>s</em>) per subject. Hence, a deterministic and reliable measuring tool is proposed, without any manual confounding effect, to efficiently support daily clinical practice in LBP management.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521223000443/pdfft?md5=02297588e6a46fe364e4e125ef7bf9b7&pid=1-s2.0-S2666521223000443-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic Low Back Pain (LBP) is one of the most prevalent musculoskeletal conditions and is the leading cause of disability worldwide. The morphology and composition of lumbar paraspinal muscles, in terms of infiltrated adipose tissue, constitute important guidelines for diagnosis and treatment choice but still require manual procedures to be assessed. We developed a fully automated artificial intelligence based algorithm both to segment paraspinal muscles from MRI scans through a U-Net architecture and to estimate the amount of fatty infiltrations by a home-made intensity- and region-based processing; we further validated our results by statistical assessment of the accuracy and agreement between our automated measures and the clinically reported values, achieving dice scores greater than 95 % on the preliminary segmentation task, as well as an excellent degree of agreement on the following area estimates (ICC2,1 = 0.89). Furthermore, we employed an external public dataset to validate our model generalization abilities, reaching dice scores greater than 94 % with an average processing time of 21.92s(±3.38s) per subject. Hence, a deterministic and reliable measuring tool is proposed, without any manual confounding effect, to efficiently support daily clinical practice in LBP management.

对腰背痛患者脊柱旁肌肉形态和构成的全自动评估
慢性腰背痛(LBP)是最常见的肌肉骨骼疾病之一,也是全球致残的主要原因。腰椎旁肌肉浸润脂肪组织的形态和组成是诊断和治疗选择的重要依据,但仍需要人工程序进行评估。我们开发了一种基于人工智能的全自动算法,既能通过 U-Net 架构从核磁共振扫描中分割脊柱旁肌肉,又能通过自制的基于强度和区域的处理方法估算脂肪浸润的数量;我们还通过统计评估我们的自动测量结果与临床报告值之间的准确性和一致性,进一步验证了我们的结果,在初步分割任务中,骰子得分大于 95%,在随后的面积估算中也达到了极佳的一致性(ICC2,1 = 0.89)。此外,我们还使用了一个外部公共数据集来验证我们的模型泛化能力,在每个受试者平均处理时间为 21.92 秒(±3.38 秒)的情况下,骰子得分超过了 94%。因此,我们提出了一种确定且可靠的测量工具,不存在任何人工混淆效应,可有效支持腰背痛管理的日常临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信