Permeant cations modulate pore dynamics and gating of TRPV1 ion channels.

IF 3.3 2区 医学 Q1 PHYSIOLOGY
Journal of General Physiology Pub Date : 2024-01-01 Epub Date: 2023-12-06 DOI:10.1085/jgp.202313422
Miriam García-Ávila, Javier Tello-Marmolejo, Tamara Rosenbaum, León D Islas
{"title":"Permeant cations modulate pore dynamics and gating of TRPV1 ion channels.","authors":"Miriam García-Ávila, Javier Tello-Marmolejo, Tamara Rosenbaum, León D Islas","doi":"10.1085/jgp.202313422","DOIUrl":null,"url":null,"abstract":"<p><p>The transient receptor vanilloid 1 (TRPV1) is a non-selective ion channel, which is activated by several chemical ligands and heat. We have previously shown that activation of TRPV1 by different ligands results in single-channel openings with different conductance, suggesting that the selectivity filter is highly dynamic. TRPV1 is weakly voltage dependent; here, we sought to explore whether the permeation of different monovalent ions could influence the voltage dependence of this ion channel. By using single-channel recordings, we show that TRPV1 channels undergo rapid transitions to closed states that are directly connected to the open state, which may result from structural fluctuations of their selectivity filter. Moreover, we demonstrate that the rates of these transitions are influenced by the permeant ion, suggesting that ion permeation regulates the voltage dependence of these channels. Our data could be the basis for more detailed MD simulations exploring the permeation mechanism and how the occupancy of different ions alters the three-dimensional structure of the pore of TRPV1 channels.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313422","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transient receptor vanilloid 1 (TRPV1) is a non-selective ion channel, which is activated by several chemical ligands and heat. We have previously shown that activation of TRPV1 by different ligands results in single-channel openings with different conductance, suggesting that the selectivity filter is highly dynamic. TRPV1 is weakly voltage dependent; here, we sought to explore whether the permeation of different monovalent ions could influence the voltage dependence of this ion channel. By using single-channel recordings, we show that TRPV1 channels undergo rapid transitions to closed states that are directly connected to the open state, which may result from structural fluctuations of their selectivity filter. Moreover, we demonstrate that the rates of these transitions are influenced by the permeant ion, suggesting that ion permeation regulates the voltage dependence of these channels. Our data could be the basis for more detailed MD simulations exploring the permeation mechanism and how the occupancy of different ions alters the three-dimensional structure of the pore of TRPV1 channels.

渗透性阳离子调节 TRPV1 离子通道的孔动力学和门控。
瞬时受体香草素 1(TRPV1)是一种非选择性离子通道,可被多种化学配体和热激活。我们之前已经证明,不同配体激活 TRPV1 会导致具有不同电导率的单通道开放,这表明选择性滤波是高度动态的。TRPV1 具有微弱的电压依赖性;在此,我们试图探索不同单价离子的渗透是否会影响该离子通道的电压依赖性。通过使用单通道记录,我们发现 TRPV1 通道会快速过渡到与开放状态直接相连的闭合状态,这可能是其选择性滤波器结构波动的结果。此外,我们还证明了这些转换的速率受渗透离子的影响,这表明离子渗透调节了这些通道的电压依赖性。我们的数据可以作为更详细的 MD 模拟的基础,以探索渗透机制以及不同离子的占据如何改变 TRPV1 通道孔的三维结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信