Evaluation of Machine Learning Approaches for Predicting Warfarin Discharge Dose in Cardiac Surgery Patients: Retrospective Algorithm Development and Validation Study.

Q2 Medicine
JMIR Cardio Pub Date : 2023-12-06 DOI:10.2196/47262
Lindsay Dryden, Jacquelin Song, Teresa J Valenzano, Zhen Yang, Meggie Debnath, Rebecca Lin, Jane Topolovec-Vranic, Muhammad Mamdani, Tony Antoniou
{"title":"Evaluation of Machine Learning Approaches for Predicting Warfarin Discharge Dose in Cardiac Surgery Patients: Retrospective Algorithm Development and Validation Study.","authors":"Lindsay Dryden, Jacquelin Song, Teresa J Valenzano, Zhen Yang, Meggie Debnath, Rebecca Lin, Jane Topolovec-Vranic, Muhammad Mamdani, Tony Antoniou","doi":"10.2196/47262","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Warfarin dosing in cardiac surgery patients is complicated by a heightened sensitivity to the drug, predisposing patients to adverse events. Predictive algorithms are therefore needed to guide warfarin dosing in cardiac surgery patients.</p><p><strong>Objective: </strong>This study aimed to develop and validate an algorithm for predicting the warfarin dose needed to attain a therapeutic international normalized ratio (INR) at the time of discharge in cardiac surgery patients.</p><p><strong>Methods: </strong>We abstracted variables influencing warfarin dosage from the records of 1031 encounters initiating warfarin between April 1, 2011, and November 29, 2019, at St Michael's Hospital in Toronto, Ontario, Canada. We compared the performance of penalized linear regression, k-nearest neighbors, random forest regression, gradient boosting, multivariate adaptive regression splines, and an ensemble model combining the predictions of the 5 regression models. We developed and validated separate models for predicting the warfarin dose required for achieving a discharge INR of 2.0-3.0 in patients undergoing all forms of cardiac surgery except mechanical mitral valve replacement and a discharge INR of 2.5-3.5 in patients receiving a mechanical mitral valve replacement. For the former, we selected 80% of encounters (n=780) who had initiated warfarin during their hospital admission and had achieved a target INR of 2.0-3.0 at the time of discharge as the training cohort. Following 10-fold cross-validation, model accuracy was evaluated in a test cohort comprised solely of cardiac surgery patients. For patients requiring a target INR of 2.5-3.5 (n=165), we used leave-p-out cross-validation (p=3 observations) to estimate model performance. For each approach, we determined the mean absolute error (MAE) and the proportion of predictions within 20% of the true warfarin dose. We retrospectively evaluated the best-performing algorithm in clinical practice by comparing the proportion of cardiovascular surgery patients discharged with a therapeutic INR before (April 2011 and July 2019) and following (September 2021 and May 2, 2022) its implementation in routine care.</p><p><strong>Results: </strong>Random forest regression was the best-performing model for patients with a target INR of 2.0-3.0, an MAE of 1.13 mg, and 39.5% of predictions of falling within 20% of the actual therapeutic discharge dose. For patients with a target INR of 2.5-3.5, the ensemble model performed best, with an MAE of 1.11 mg and 43.6% of predictions being within 20% of the actual therapeutic discharge dose. The proportion of cardiovascular surgery patients discharged with a therapeutic INR before and following implementation of these algorithms in clinical practice was 47.5% (305/641) and 61.1% (11/18), respectively.</p><p><strong>Conclusions: </strong>Machine learning algorithms based on routinely available clinical data can help guide initial warfarin dosing in cardiac surgery patients and optimize the postsurgical anticoagulation of these patients.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e47262"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/47262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Warfarin dosing in cardiac surgery patients is complicated by a heightened sensitivity to the drug, predisposing patients to adverse events. Predictive algorithms are therefore needed to guide warfarin dosing in cardiac surgery patients.

Objective: This study aimed to develop and validate an algorithm for predicting the warfarin dose needed to attain a therapeutic international normalized ratio (INR) at the time of discharge in cardiac surgery patients.

Methods: We abstracted variables influencing warfarin dosage from the records of 1031 encounters initiating warfarin between April 1, 2011, and November 29, 2019, at St Michael's Hospital in Toronto, Ontario, Canada. We compared the performance of penalized linear regression, k-nearest neighbors, random forest regression, gradient boosting, multivariate adaptive regression splines, and an ensemble model combining the predictions of the 5 regression models. We developed and validated separate models for predicting the warfarin dose required for achieving a discharge INR of 2.0-3.0 in patients undergoing all forms of cardiac surgery except mechanical mitral valve replacement and a discharge INR of 2.5-3.5 in patients receiving a mechanical mitral valve replacement. For the former, we selected 80% of encounters (n=780) who had initiated warfarin during their hospital admission and had achieved a target INR of 2.0-3.0 at the time of discharge as the training cohort. Following 10-fold cross-validation, model accuracy was evaluated in a test cohort comprised solely of cardiac surgery patients. For patients requiring a target INR of 2.5-3.5 (n=165), we used leave-p-out cross-validation (p=3 observations) to estimate model performance. For each approach, we determined the mean absolute error (MAE) and the proportion of predictions within 20% of the true warfarin dose. We retrospectively evaluated the best-performing algorithm in clinical practice by comparing the proportion of cardiovascular surgery patients discharged with a therapeutic INR before (April 2011 and July 2019) and following (September 2021 and May 2, 2022) its implementation in routine care.

Results: Random forest regression was the best-performing model for patients with a target INR of 2.0-3.0, an MAE of 1.13 mg, and 39.5% of predictions of falling within 20% of the actual therapeutic discharge dose. For patients with a target INR of 2.5-3.5, the ensemble model performed best, with an MAE of 1.11 mg and 43.6% of predictions being within 20% of the actual therapeutic discharge dose. The proportion of cardiovascular surgery patients discharged with a therapeutic INR before and following implementation of these algorithms in clinical practice was 47.5% (305/641) and 61.1% (11/18), respectively.

Conclusions: Machine learning algorithms based on routinely available clinical data can help guide initial warfarin dosing in cardiac surgery patients and optimize the postsurgical anticoagulation of these patients.

用于预测心脏手术患者华法林出院剂量的机器学习方法评估:回顾性算法开发与验证研究。
背景:心脏手术患者对华法林的用药剂量因其对药物的高度敏感性而变得复杂,容易发生不良事件。因此需要一种预测算法来指导心脏手术患者的华法林用药:本研究旨在开发并验证一种算法,用于预测心脏手术患者出院时达到治疗性国际正常化比值(INR)所需的华法林剂量:我们从加拿大安大略省多伦多市圣迈克尔医院2011年4月1日至2019年11月29日期间1031例开始使用华法林的病例记录中抽取了影响华法林剂量的变量。我们比较了惩罚线性回归、k-近邻、随机森林回归、梯度提升、多变量自适应回归样条以及结合 5 种回归模型预测结果的集合模型的性能。我们分别建立并验证了两个模型,一个用于预测除机械二尖瓣置换术外所有形式心脏手术患者出院 INR 达到 2.0-3.0 所需的华法林剂量,另一个用于预测机械二尖瓣置换术患者出院 INR 达到 2.5-3.5 所需的华法林剂量。对于前者,我们选择了 80% 在入院时开始使用华法林并在出院时达到 2.0-3.0 目标 INR 的患者(n=780)作为训练队列。经过 10 倍交叉验证后,在仅由心脏手术患者组成的测试队列中评估了模型的准确性。对于要求目标 INR 为 2.5-3.5 的患者(n=165),我们使用留空交叉验证(p=3 个观察值)来估计模型的性能。对于每种方法,我们都确定了平均绝对误差(MAE)和真实华法林剂量 20% 以内的预测比例。我们对临床实践中表现最佳的算法进行了回顾性评估,比较了该算法在常规护理中实施前(2011 年 4 月和 2019 年 7 月)和实施后(2021 年 9 月和 2022 年 5 月 2 日)出院时 INR 达到治疗水平的心血管手术患者比例:对于目标 INR 为 2.0-3.0 的患者,随机森林回归是表现最好的模型,MAE 为 1.13 毫克,39.5% 的预测值在实际出院治疗剂量的 20% 以内。对于目标 INR 为 2.5-3.5 的患者,集合模型表现最佳,MAE 为 1.11 毫克,43.6% 的预测值在实际治疗出院剂量的 20% 以内。在临床实践中采用这些算法之前和之后,心血管手术患者出院时INR达到治疗水平的比例分别为47.5%(305/641)和61.1%(11/18):基于常规可用临床数据的机器学习算法有助于指导心脏手术患者的初始华法林剂量,并优化这些患者手术后的抗凝治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Cardio
JMIR Cardio Computer Science-Computer Science Applications
CiteScore
3.50
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信