{"title":"Study of the ionospheric responses over African and Asian longitudes to the intense geomagnetic storm of August 2018","authors":"Sk Samin Kader, N. Dashora, K. Niranjan","doi":"10.1007/s10509-023-04259-2","DOIUrl":null,"url":null,"abstract":"<div><p>The third strongest geomagnetic storm of solar cycle 24 occurred from 25 to 31 August 2018 (minimum SYM-H index = –206 nT on 26 August) and was associated with a weak coronal mass ejection (CME) in the low solar activity period. The storm itself has shown some very unusual characteristics in interplanetary space, which unraveled further surprises in its ionospheric and thermospheric responses. This study provides a detailed analysis of the effects of this storm over the vast African-Asian longitude region over both hemispheres. The longitudinal differences in the equatorward boundary of the auroral oval and the ionospheric convection patterns are presented using the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) onboard the Defense Meteorological Satellite Program (DMSP) satellite and SuperDARN observations, respectively. The global ionospheric map (GIM)-based hourly vertical TEC (total electron content) variations show large enhancements and depletions over different regions at different phases of storms. It is found that during the morning hours on 26 August, a large TEC enhancement in the Asian low latitude region is observed, but such an effect is not observed over the African region, establishing a clear longitudinal difference. The space-time structure of the enhanced ion-density observations from Swarm satellites is used to confirm the VTEC differences and their sustenance. Furthermore, a latitudinal variation in the [O/N2] ratio during 25-27 August is analyzed for a UT-dependent response and the north–south asymmetry in the O density during the main and recovery phases of the storm. A competing effect of the prompt penetration electric field and disturbance dynamo is found to dominantly modulate the longitudinal patterns, which created positive/negative ionospheric storms over the vast African-Asian region.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-023-04259-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The third strongest geomagnetic storm of solar cycle 24 occurred from 25 to 31 August 2018 (minimum SYM-H index = –206 nT on 26 August) and was associated with a weak coronal mass ejection (CME) in the low solar activity period. The storm itself has shown some very unusual characteristics in interplanetary space, which unraveled further surprises in its ionospheric and thermospheric responses. This study provides a detailed analysis of the effects of this storm over the vast African-Asian longitude region over both hemispheres. The longitudinal differences in the equatorward boundary of the auroral oval and the ionospheric convection patterns are presented using the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) onboard the Defense Meteorological Satellite Program (DMSP) satellite and SuperDARN observations, respectively. The global ionospheric map (GIM)-based hourly vertical TEC (total electron content) variations show large enhancements and depletions over different regions at different phases of storms. It is found that during the morning hours on 26 August, a large TEC enhancement in the Asian low latitude region is observed, but such an effect is not observed over the African region, establishing a clear longitudinal difference. The space-time structure of the enhanced ion-density observations from Swarm satellites is used to confirm the VTEC differences and their sustenance. Furthermore, a latitudinal variation in the [O/N2] ratio during 25-27 August is analyzed for a UT-dependent response and the north–south asymmetry in the O density during the main and recovery phases of the storm. A competing effect of the prompt penetration electric field and disturbance dynamo is found to dominantly modulate the longitudinal patterns, which created positive/negative ionospheric storms over the vast African-Asian region.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.