Overcrowding and separation estimates for the Coulomb gas

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Eric Thoma
{"title":"Overcrowding and separation estimates for the Coulomb gas","authors":"Eric Thoma","doi":"10.1002/cpa.22188","DOIUrl":null,"url":null,"abstract":"<p>We prove several results for the Coulomb gas in any dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d \\ge 2$</annotation>\n </semantics></math> that follow from <i>isotropic averaging</i>, a transport method based on Newton's theorem. First, we prove a high-density Jancovici–Lebowitz–Manificat law, extending the microscopic density bounds of Armstrong and Serfaty and establishing strictly sub-Gaussian tails for charge excess in dimension 2. The existence of microscopic limiting point processes is proved at the edge of the droplet. Next, we prove optimal upper bounds on the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-point correlation function for merging points, including a Wegner estimate for the Coulomb gas for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k=1$</annotation>\n </semantics></math>. We prove the tightness of the properly rescaled <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>th minimal particle gap, identifying the correct order in <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d=2$</annotation>\n </semantics></math> and a three term expansion in <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d \\ge 3$</annotation>\n </semantics></math>, as well as upper and lower tail estimates. In particular, we extend the two-dimensional “perfect-freezing regime” identified by Ameur and Romero to higher dimensions. Finally, we give positive charge discrepancy bounds which are state of the art near the droplet boundary and prove incompressibility of Laughlin states in the fractional quantum Hall effect, starting at large microscopic scales. Using rigidity for fluctuations of smooth linear statistics, we show how to upgrade positive discrepancy bounds to estimates on the absolute discrepancy in certain regions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22188","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We prove several results for the Coulomb gas in any dimension d 2 $d \ge 2$ that follow from isotropic averaging, a transport method based on Newton's theorem. First, we prove a high-density Jancovici–Lebowitz–Manificat law, extending the microscopic density bounds of Armstrong and Serfaty and establishing strictly sub-Gaussian tails for charge excess in dimension 2. The existence of microscopic limiting point processes is proved at the edge of the droplet. Next, we prove optimal upper bounds on the k $k$ -point correlation function for merging points, including a Wegner estimate for the Coulomb gas for k = 1 $k=1$ . We prove the tightness of the properly rescaled k $k$ th minimal particle gap, identifying the correct order in d = 2 $d=2$ and a three term expansion in d 3 $d \ge 3$ , as well as upper and lower tail estimates. In particular, we extend the two-dimensional “perfect-freezing regime” identified by Ameur and Romero to higher dimensions. Finally, we give positive charge discrepancy bounds which are state of the art near the droplet boundary and prove incompressibility of Laughlin states in the fractional quantum Hall effect, starting at large microscopic scales. Using rigidity for fluctuations of smooth linear statistics, we show how to upgrade positive discrepancy bounds to estimates on the absolute discrepancy in certain regions.

库仑气体的过度拥挤和分离估计
我们证明了基于牛顿定理的各向同性平均输运方法对任意维度d≥2$d \ge 2$的库仑气体的几个结果。首先,我们证明了高密度jancovicii - lebowitz - manificat定律,扩展了Armstrong和Serfaty的微观密度界,并建立了2维电荷过量的严格亚高斯尾。证明了液滴边缘存在微观极限点过程。接下来,我们证明了合并点的k点相关函数的最优上界,包括k=1$k=1$时库仑气体的Wegner估计。我们证明了适当重新标度的第k个最小粒子间隙的紧密性,识别了d=2$d=2$和d≥3$d \ ge3 $的三项展开的正确顺序,以及上下尾估计。特别地,我们将Ameur和Romero确定的二维“完美冻结状态”扩展到更高的维度。最后,我们给出了液滴边界附近目前最先进的正电荷差异边界,并证明了分数量子霍尔效应中劳克林态的不可压缩性,从大微观尺度开始。利用光滑线性统计波动的刚性,我们展示了如何将正差异界提升为对特定区域的绝对差异的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信