{"title":"Measurement-based fading characteristics analysis and modeling of UAV to vehicles channel","authors":"Yue Lyu , Wei Wang , Yuzhe Sun , Ibrahim Rashdan","doi":"10.1016/j.vehcom.2023.100707","DOIUrl":null,"url":null,"abstract":"<div><p><span>With the rapid development of unmanned aerial vehicle<span> (UAV) and autonomous driving technology, </span></span>wireless communication<span><span><span> between UAV and vehicles has become one of the hotspots in the research of intelligent transportation systems (ITS). Particularly, link-level UAV-based communication requires correlation characteristics of </span>propagation channel<span>. In the current channel measurement, the transmitter or receiver of the ground is fixed, which ignores the high dynamics of the vehicle and the complexity of the environment in the ITS scene. Therefore, it is necessary to conduct a dynamic channel measurement and analysis for UAV. In this paper, we carry out an UAV-to-Vehicle (U2V) measurement campaign in S- and C-band for multiple scenarios of low-altitude UAV and mobile vehicles propagation and provide a comprehensive investigation of channel fading characteristics. Based on the measurement data, the statistics of large-scale fading (path loss, shadow fading and its autocorrelation) and small-scale fading (amplitude distribution) for several typical measurement scenarios are extracted first, which are compared with other air-to-ground (A2G) and standard terrestrial propagation scenarios to analyze the U2V propagation characteristics<span> in various scenarios. A comprehensive analysis and comparative study of all considered channel parameters extracted is then performed to reflect the physical laws behind the measurements. The analysis results reveal that the Log-distance model outperforms the considered typical models in terms of predicting the path loss, and the proposed autocorrelation model shows better performance than traditional models. The quantitative results are essential for modeling and realizing reliable communications in U2V </span></span></span>wireless systems and analyzing the performance for UAV-enabled ITS.</span></p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"45 ","pages":"Article 100707"},"PeriodicalIF":5.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209623001377","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of unmanned aerial vehicle (UAV) and autonomous driving technology, wireless communication between UAV and vehicles has become one of the hotspots in the research of intelligent transportation systems (ITS). Particularly, link-level UAV-based communication requires correlation characteristics of propagation channel. In the current channel measurement, the transmitter or receiver of the ground is fixed, which ignores the high dynamics of the vehicle and the complexity of the environment in the ITS scene. Therefore, it is necessary to conduct a dynamic channel measurement and analysis for UAV. In this paper, we carry out an UAV-to-Vehicle (U2V) measurement campaign in S- and C-band for multiple scenarios of low-altitude UAV and mobile vehicles propagation and provide a comprehensive investigation of channel fading characteristics. Based on the measurement data, the statistics of large-scale fading (path loss, shadow fading and its autocorrelation) and small-scale fading (amplitude distribution) for several typical measurement scenarios are extracted first, which are compared with other air-to-ground (A2G) and standard terrestrial propagation scenarios to analyze the U2V propagation characteristics in various scenarios. A comprehensive analysis and comparative study of all considered channel parameters extracted is then performed to reflect the physical laws behind the measurements. The analysis results reveal that the Log-distance model outperforms the considered typical models in terms of predicting the path loss, and the proposed autocorrelation model shows better performance than traditional models. The quantitative results are essential for modeling and realizing reliable communications in U2V wireless systems and analyzing the performance for UAV-enabled ITS.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.