Dynamical behavior of fractional order SEIR epidemic model with multiple time delays and its stability analysis

Subrata Paul , Animesh Mahata , Supriya Mukherjee , Prakash Chandra Mali , Banamali Roy
{"title":"Dynamical behavior of fractional order SEIR epidemic model with multiple time delays and its stability analysis","authors":"Subrata Paul ,&nbsp;Animesh Mahata ,&nbsp;Supriya Mukherjee ,&nbsp;Prakash Chandra Mali ,&nbsp;Banamali Roy","doi":"10.1016/j.exco.2023.100128","DOIUrl":null,"url":null,"abstract":"<div><p>With multiple time delays, we investigated a Caputo fractional order dynamical system involving susceptible, exposed, infected, and recovered individuals. Positivity and boundedness are also theoretically demonstrated using Laplace transform and Mittag-Leffler function. The stability of the disease-free and epidemic equilibrium points has been studied for both delayed and non-delayed model. For generating numerical solutions to the model system, we used the Adam-Bashforth-Moulton predictor-corrector technique. With the help of MATLAB (2018a), we were able to conduct graphical demonstrations and numerical simulations. The system displays Hopf bifurcation and the solutions are no longer periodic beyond a certain threshold value of the time delay parameters.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X23000307/pdfft?md5=edab84a58f8ff0eb993a5fb57ba503c9&pid=1-s2.0-S2666657X23000307-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With multiple time delays, we investigated a Caputo fractional order dynamical system involving susceptible, exposed, infected, and recovered individuals. Positivity and boundedness are also theoretically demonstrated using Laplace transform and Mittag-Leffler function. The stability of the disease-free and epidemic equilibrium points has been studied for both delayed and non-delayed model. For generating numerical solutions to the model system, we used the Adam-Bashforth-Moulton predictor-corrector technique. With the help of MATLAB (2018a), we were able to conduct graphical demonstrations and numerical simulations. The system displays Hopf bifurcation and the solutions are no longer periodic beyond a certain threshold value of the time delay parameters.

多时滞分数阶SEIR流行病模型的动力学行为及其稳定性分析
我们研究了一个包含易感、暴露、感染和恢复个体的Caputo分数阶动力系统。利用拉普拉斯变换和Mittag-Leffler函数从理论上证明了正性和有界性。研究了时滞模型和非时滞模型的无病平衡点和流行平衡点的稳定性。为了生成模型系统的数值解,我们使用了Adam-Bashforth-Moulton预测校正技术。在MATLAB (2018a)的帮助下,我们能够进行图形演示和数值模拟。系统出现Hopf分岔,超过一定的时滞参数阈值后解不再具有周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信