Yilong Qu, Runze Dong, Liangcai Gu, Cliburn Chan, Jichun Xie, Carolyn Glass, Xiao-Fan Wang, Andrew B Nixon, Zhicheng Ji
{"title":"Single-cell and spatial detection of senescent cells using DeepScence.","authors":"Yilong Qu, Runze Dong, Liangcai Gu, Cliburn Chan, Jichun Xie, Carolyn Glass, Xiao-Fan Wang, Andrew B Nixon, Zhicheng Ji","doi":"10.1101/2023.11.21.568150","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both <i>in vitro</i> and <i>in vivo</i>, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.21.568150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both in vitro and in vivo, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.