Potentialities and development of groundwater resources applying machine learning models in the extended section of Manbhum-Singhbhum Plateau, India

Arijit Ghosh, Biswajit Bera
{"title":"Potentialities and development of groundwater resources applying machine learning models in the extended section of Manbhum-Singhbhum Plateau, India","authors":"Arijit Ghosh,&nbsp;Biswajit Bera","doi":"10.1016/j.hydres.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is essential for living earth including ecosystem functioning and development of society worldwide. In recent times, demand and pressure on groundwater resources are progressively increasing over time. Thus, the assessment and management of groundwater resources particularly in semi-arid region are very much crucial. Therefore, the principal objective of the present study is to categorize the groundwater potential areas using advanced machine learning (ML) approaches. In this study, random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) algorithms have been applied. The accuracy of each model has been estimated using the receiver operating characteristics (ROC) curve. About 60.63%, 65.39%, and 53.75% of areas come under moderate to very low groundwater potential. XGBoost indicates the highest predictive capacity (AUC 0.97). The innovation of this study lies in the combination of hydrological, topographical and geological datasets into machine learning platform. This research will support water resource management worldwide.</p></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"7 ","pages":"Pages 1-14"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258975782300032X/pdfft?md5=d1eb7fa7eb87a5a54b53400f9ff4c01d&pid=1-s2.0-S258975782300032X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258975782300032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater is essential for living earth including ecosystem functioning and development of society worldwide. In recent times, demand and pressure on groundwater resources are progressively increasing over time. Thus, the assessment and management of groundwater resources particularly in semi-arid region are very much crucial. Therefore, the principal objective of the present study is to categorize the groundwater potential areas using advanced machine learning (ML) approaches. In this study, random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) algorithms have been applied. The accuracy of each model has been estimated using the receiver operating characteristics (ROC) curve. About 60.63%, 65.39%, and 53.75% of areas come under moderate to very low groundwater potential. XGBoost indicates the highest predictive capacity (AUC 0.97). The innovation of this study lies in the combination of hydrological, topographical and geological datasets into machine learning platform. This research will support water resource management worldwide.

应用机器学习模型在印度manbhumm - singhbhum高原扩展段研究地下水资源的潜力和开发
地下水是地球生命、生态系统功能和社会发展所必需的。近年来,随着时间的推移,对地下水资源的需求和压力逐渐增加。因此,地下水资源的评价和管理,特别是半干旱区地下水资源的评价和管理至关重要。因此,本研究的主要目标是使用先进的机器学习(ML)方法对地下水潜在区域进行分类。在本研究中,随机森林(RF)、支持向量机(SVM)和极端梯度增强(XGBoost)算法被应用。使用受试者工作特征(ROC)曲线估计每个模型的准确性。60.63%、65.39%和53.75%的地区地下水潜力处于中至极低水平。XGBoost的预测能力最高,AUC为0.97。本研究的创新之处在于将水文、地形和地质数据集结合到机器学习平台中。这项研究将支持全世界的水资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信