Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (related to a cohomogeneity one point of view on a Yau conjecture)
{"title":"Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (related to a cohomogeneity one point of view on a Yau conjecture)","authors":"Xiaoman Duan, Zhuangdan Guan","doi":"10.1007/s10473-024-0103-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"78 - 102"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0103-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.