Classifications of Dupin hypersurfaces in Lie sphere geometry

IF 1.2 4区 数学 Q1 MATHEMATICS
Thomas E. Cecil
{"title":"Classifications of Dupin hypersurfaces in Lie sphere geometry","authors":"Thomas E. Cecil","doi":"10.1007/s10473-024-0101-7","DOIUrl":null,"url":null,"abstract":"<div><p>This is a survey of local and global classification results concerning Dupin hypersurfaces in <i>S</i><sup><i>n</i></sup> (or <b>R</b><sup><i>n</i></sup>) that have been obtained in the context of Lie sphere geometry. The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres. Along with these classification results, many important concepts from Lie sphere geometry, such as curvature spheres, Lie curvatures, and Legendre lifts of submanifolds of <i>S</i><sup><i>n</i></sup> (or <b>R</b><sup><i>n</i></sup>), are described in detail. The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"1 - 36"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0101-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This is a survey of local and global classification results concerning Dupin hypersurfaces in Sn (or Rn) that have been obtained in the context of Lie sphere geometry. The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres. Along with these classification results, many important concepts from Lie sphere geometry, such as curvature spheres, Lie curvatures, and Legendre lifts of submanifolds of Sn (or Rn), are described in detail. The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.

李球几何中Dupin超曲面的分类
本文综述了在李球几何背景下获得的关于Sn(或Rn)中Dupin超曲面的局部和全局分类结果。重点是将Dupin超曲面与球中的等参超曲面联系起来的结果。与这些分类结果一起,详细描述了李球几何中的许多重要概念,如曲率球、李曲率和Sn(或Rn)子流形的勒让德提升。本文还包含了具有某些特殊性质的Dupin超曲面的几个重要构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信