Global classical solutions of semilinear wave equations on \({\mathbb{R}^3} \times \mathbb{T}\) with cubic nonlinearities

IF 1.2 4区 数学 Q1 MATHEMATICS
Fei Tao
{"title":"Global classical solutions of semilinear wave equations on \\({\\mathbb{R}^3} \\times \\mathbb{T}\\) with cubic nonlinearities","authors":"Fei Tao","doi":"10.1007/s10473-024-0105-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space <span>\\({\\mathbb{R}^3} \\times \\mathbb{T}\\)</span>. The semilinear nonlinearity is assumed to be of the cubic form. The main ingredient here is the establishment of the <i>L</i><sup>2</sup>–<i>L</i><sup>∞</sup> decay estimates and the energy estimates for the linear problem, which are adapted to the wave equation on the product space. The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction, the scaling technique, and the combination of the decay estimates and the energy estimates.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"115 - 128"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0105-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space \({\mathbb{R}^3} \times \mathbb{T}\). The semilinear nonlinearity is assumed to be of the cubic form. The main ingredient here is the establishment of the L2L decay estimates and the energy estimates for the linear problem, which are adapted to the wave equation on the product space. The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction, the scaling technique, and the combination of the decay estimates and the energy estimates.

\({\mathbb{R}^3} \times \mathbb{T}\)上具有三次非线性的半线性波动方程的全局经典解
本文建立了积空间\({\mathbb{R}^3} \times \mathbb{T}\)上具有小紧致支持初始数据的半线性波动方程的全局经典解。假定半线性非线性为三次形式。本文的主要内容是建立线性问题的L2-L∞衰减估计和能量估计,并使之适应于波方程在积空间上的分布。证明是基于解的傅里叶模式分解关于周期方向,缩放技术,和衰减估计和能量估计的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信