Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum

IF 1.2 4区 数学 Q1 MATHEMATICS
Zhenhua Guo, Xueyao Zhang
{"title":"Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum","authors":"Zhenhua Guo,&nbsp;Xueyao Zhang","doi":"10.1007/s10473-024-0114-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the one-dimensional motion of viscous gas near a vacuum, with the gas connecting to a vacuum state with a jump in density. The interface behavior, the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficient <i>μ</i>(<i>ρ</i>) = <i>ρ</i><sup><i>α</i></sup> for any 0 &lt; α &lt; 1; this includes the time-weighted boundedness from below and above. The smoothness of the solution is discussed. Moreover, we construct a class of self-similar classical solutions which exhibit some interesting properties, such as optimal estimates. The present paper extends the results in [Luo T, Xin Z P, Yang T. SIAM J Math Anal, 2000, 31(6): 1175–1191] to the jump boundary conditions case with density-dependent viscosity.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0114-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the one-dimensional motion of viscous gas near a vacuum, with the gas connecting to a vacuum state with a jump in density. The interface behavior, the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficient μ(ρ) = ρα for any 0 < α < 1; this includes the time-weighted boundedness from below and above. The smoothness of the solution is discussed. Moreover, we construct a class of self-similar classical solutions which exhibit some interesting properties, such as optimal estimates. The present paper extends the results in [Luo T, Xin Z P, Yang T. SIAM J Math Anal, 2000, 31(6): 1175–1191] to the jump boundary conditions case with density-dependent viscosity.

具有密度依赖粘度和真空的可压缩Navier-Stokes体系的界面行为和衰减率
在本文中,我们研究了粘性气体在真空附近的一维运动,气体在密度跳跃的情况下进入真空状态。当粘度系数μ(ρ) = ρα为任意0 <时,得到了界面行为、密度函数的点向衰减率和界面膨胀率;α& lt;1;这包括从下面和上面的时间加权有界性。讨论了解的平滑性。此外,我们构造了一类具有最优估计等有趣性质的自相似经典解。本文将罗涛,辛志平,杨涛。[J] .数学学报,2000,31(6):1175-1191推广到具有密度依赖黏度的跳跃边界条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信