A two-parameter multiple shooting method and its application to the natural vibrations of non-prismatic multi-segment beams

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
R. Hołubowski, K. Jarczewska
{"title":"A two-parameter multiple shooting method and its application to the natural vibrations of non-prismatic multi-segment beams","authors":"R. Hołubowski,&nbsp;K. Jarczewska","doi":"10.1007/s10483-023-3062-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved. A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams. The proposed algorithm, named as two-parameter multiple shooting method, is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions. The impact of the axial force and additional point masses is also taken into account. Due to the fact that the method is based directly on the fourth-order ordinary differential equation, the structures do not have to be divided into many small elements to obtain an accurate enough solution, even though the geometry is very complex. To verify the proposed method, three different examples are considered, i.e., a three-segment non-prismatic beam, a prismatic column subject to non-uniformly distributed compressive loads, and a two-segment beam with an additional point mass. Numerical analyses are carried out with the software MATHEMATICA. The results are compared with the solutions computed by the commercial finite element program SOFiSTiK. Good agreement is achieved, which confirms the correctness and high effectiveness of the formulated algorithm.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 12","pages":"2243 - 2252"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3062-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved. A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams. The proposed algorithm, named as two-parameter multiple shooting method, is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions. The impact of the axial force and additional point masses is also taken into account. Due to the fact that the method is based directly on the fourth-order ordinary differential equation, the structures do not have to be divided into many small elements to obtain an accurate enough solution, even though the geometry is very complex. To verify the proposed method, three different examples are considered, i.e., a three-segment non-prismatic beam, a prismatic column subject to non-uniformly distributed compressive loads, and a two-segment beam with an additional point mass. Numerical analyses are carried out with the software MATHEMATICA. The results are compared with the solutions computed by the commercial finite element program SOFiSTiK. Good agreement is achieved, which confirms the correctness and high effectiveness of the formulated algorithm.

非棱镜多段梁固有振动的双参数多次射击方法及其应用
本文提出了一种改进的标准射击方法,可以求解两个未知参数的问题。提出了一种新的欧拉-伯努利梁固有振动分析方法。本文提出的双参数多次射击法是计算不同边界条件下多段棱柱和非棱柱梁固有频率和模态的一种新的强大数值工具。还考虑了轴向力和附加点质量的影响。由于该方法直接基于四阶常微分方程,因此即使几何结构非常复杂,也不必将结构分成许多小单元来获得足够精确的解。为了验证所提出的方法,考虑了三个不同的例子,即三段非棱柱梁,受非均匀分布压缩载荷的棱柱柱,以及附加点质量的两段梁。利用MATHEMATICA软件进行了数值分析。结果与商用有限元软件SOFiSTiK的计算结果进行了比较。得到了很好的一致性,验证了所制定算法的正确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信