Gas Transport Properties of Vinylidene Fluoride-Tetrafluoroethylene Copolymers

IF 2 Q4 CHEMISTRY, PHYSICAL
A. Yu. Alentiev, R. Yu. Nikiforov, I. S. Levin, D. A. Tsarev, V. E. Ryzhikh, D. A. Syrtsova, N. A. Belov
{"title":"Gas Transport Properties of Vinylidene Fluoride-Tetrafluoroethylene Copolymers","authors":"A. Yu. Alentiev,&nbsp;R. Yu. Nikiforov,&nbsp;I. S. Levin,&nbsp;D. A. Tsarev,&nbsp;V. E. Ryzhikh,&nbsp;D. A. Syrtsova,&nbsp;N. A. Belov","doi":"10.1134/S2517751623060021","DOIUrl":null,"url":null,"abstract":"<p>Effect of the content of tetrafluoroethylene groups on the gas transport properties of vinylidene fluoride-tetrafluoroethylene copolymers has been studied. The experimental values of permeability coefficients <i>P</i> and diffusion coefficients <i>D</i> for gases H<sub>2</sub>, He, N<sub>2</sub>, O<sub>2</sub>, and CO<sub>2</sub> as well as lower hydrocarbons CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub> are measured, and their solubility coefficients <i>S</i> are calculated. It is shown that the values of the solubility coefficients of СО<sub>2</sub> and С<sub>2</sub>Н<sub>4</sub> deviate from the direct correlation dependence of lоg <i>S</i> on the Lennard-Jones potential, and this effect is explained in terms of facilitated transport models. It is demonstrated that an increase in the content of TFE groups leads to a significant rise in the permeability coefficients of the studied penetrants mainly due to an increase in their diffusion coefficients. For example, the permeability coefficient of helium and hydrogen increases by almost 2.5 times, carbon dioxide by 3 times, argon, oxygen, methane and ethylene by 3.5 times, and nitrogen and ethane by 4.4 times, respectively. These gas separation parameters in combination with good film-forming properties and commercial availability make it possible to consider the studied VDF-TFE copolymers to be promising materials for the fabrication of composite gas separation membranes.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 6","pages":"430 - 439"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623060021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effect of the content of tetrafluoroethylene groups on the gas transport properties of vinylidene fluoride-tetrafluoroethylene copolymers has been studied. The experimental values of permeability coefficients P and diffusion coefficients D for gases H2, He, N2, O2, and CO2 as well as lower hydrocarbons CH4, C2H4, and C2H6 are measured, and their solubility coefficients S are calculated. It is shown that the values of the solubility coefficients of СО2 and С2Н4 deviate from the direct correlation dependence of lоg S on the Lennard-Jones potential, and this effect is explained in terms of facilitated transport models. It is demonstrated that an increase in the content of TFE groups leads to a significant rise in the permeability coefficients of the studied penetrants mainly due to an increase in their diffusion coefficients. For example, the permeability coefficient of helium and hydrogen increases by almost 2.5 times, carbon dioxide by 3 times, argon, oxygen, methane and ethylene by 3.5 times, and nitrogen and ethane by 4.4 times, respectively. These gas separation parameters in combination with good film-forming properties and commercial availability make it possible to consider the studied VDF-TFE copolymers to be promising materials for the fabrication of composite gas separation membranes.

Abstract Image

偏氟乙烯-四氟乙烯共聚物的气体输运特性
研究了四氟乙烯基团含量对偏氟乙烯-四氟乙烯共聚物气体输运性能的影响。测定了H2、He、N2、O2、CO2气体和低碳氢化合物CH4、C2H4、C2H6的渗透率系数P和扩散系数D的实验值,并计算了它们的溶解度系数S。结果表明,СО2和С2Н4的溶解度系数值偏离了lvd - S对Lennard-Jones势的直接相关依赖,这种影响可以用促进输运模型来解释。结果表明,随着TFE基团含量的增加,渗透剂的渗透系数显著升高,这主要是由于渗透剂的扩散系数增大所致。例如,氦气和氢气的渗透系数增加了近2.5倍,二氧化碳增加了3倍,氩气、氧气、甲烷和乙烯分别增加了3.5倍,氮气和乙烷分别增加了4.4倍。这些气体分离参数加上良好的成膜性能和商业可行性,使得研究的VDF-TFE共聚物有可能成为制造复合气体分离膜的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信